000617187 001__ 617187
000617187 005__ 20250715170953.0
000617187 0247_ $$2doi$$a10.1007/JHEP01(2024)188
000617187 0247_ $$2INSPIRETeX$$aDallaBrida:2023fpl
000617187 0247_ $$2inspire$$ainspire:2744144
000617187 0247_ $$2ISSN$$a1126-6708
000617187 0247_ $$2ISSN$$a1029-8479
000617187 0247_ $$2ISSN$$a1127-2236
000617187 0247_ $$2arXiv$$aarXiv:2401.00216
000617187 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06646
000617187 0247_ $$2WOS$$aWOS:001154661000009
000617187 0247_ $$2openalex$$aopenalex:W4392077471
000617187 037__ $$aPUBDB-2024-06646
000617187 041__ $$aEnglish
000617187 082__ $$a530
000617187 088__ $$2arXiv$$aarXiv:2401.00216
000617187 088__ $$2DESY$$aDESY-24-001
000617187 1001_ $$0P:(DE-H253)PIP1018317$$aDalla Brida, Mattia$$b0
000617187 245__ $$aHeavy Wilson quarks and O(a) improvement: nonperturbative results for b$_{g}$
000617187 260__ $$a[Trieste]$$bSISSA$$c2024
000617187 3367_ $$2DRIVER$$aarticle
000617187 3367_ $$2DataCite$$aOutput Types/Journal article
000617187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1733909009_2790414
000617187 3367_ $$2BibTeX$$aARTICLE
000617187 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000617187 3367_ $$00$$2EndNote$$aJournal Article
000617187 500__ $$aJ. High Energ. Phys. 2024, 188 (2024). 26 pages, 5 figures. Included additional references and fixed some typos. Matches published version   The work is supported by the German Research Foundation (DFG) research unit FOR5269“Future methods for studying confined gluons in QCD”. 
000617187 520__ $$aWith Wilson quarks, on-shell O(a) improvement of the lattice QCD action is achieved by including the Sheikholeslami-Wohlert term and two further operators of mass dimension 5, which amount to a mass-dependent rescaling of the bare parameters. We here focus on the rescaled bare coupling, $ {\tilde{g}}_0^2={g}_0^2\left(1+{b}_{\textrm{g}}a{m}_{\textrm{q}}\right) $, and the determination of $ {b}_{\textrm{g}}\left({g}_0^2\right) $ which is currently only known to 1-loop order of perturbation theory. We derive suitable improvement conditions in the chiral limit and in a finite space-time volume and evaluate these for different gluonic observables, both with and without the gradient flow. The choice of β-values and the line of constant physics are motivated by the ALPHA collaboration’s decoupling strategy to determine α$_{s}$(m$_{Z}$) [1]. However, the improvement conditions and some insight into systematic effects may prove useful in other contexts, too.
000617187 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000617187 536__ $$0G:(EU-Grant)813942$$aEuroPLEx - European network for Particle physics, Lattice field theory and Extreme computing (813942)$$c813942$$fH2020-MSCA-ITN-2018$$x1
000617187 542__ $$2Crossref$$i2024-01-31$$uhttps://creativecommons.org/licenses/by/4.0
000617187 542__ $$2Crossref$$i2024-01-31$$uhttps://creativecommons.org/licenses/by/4.0
000617187 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000617187 650_7 $$2INSPIRE$$aquark: Wilson
000617187 650_7 $$2INSPIRE$$adimension: 5
000617187 650_7 $$2INSPIRE$$aflow: gradient
000617187 650_7 $$2INSPIRE$$amass: operator
000617187 650_7 $$2INSPIRE$$aquantum chromodynamics
000617187 650_7 $$2INSPIRE$$alattice field theory: action
000617187 650_7 $$2INSPIRE$$aspace-time
000617187 650_7 $$2INSPIRE$$asymmetry: chiral
000617187 650_7 $$2INSPIRE$$adecoupling
000617187 650_7 $$2INSPIRE$$anonperturbative
000617187 650_7 $$2INSPIRE$$amass dependence
000617187 650_7 $$2INSPIRE$$arescaling
000617187 650_7 $$2INSPIRE$$aperturbation theory
000617187 650_7 $$2INSPIRE$$abeta function
000617187 650_7 $$2INSPIRE$$acoupling constant
000617187 650_7 $$2autogen$$aAlgorithms and Theoretical Developments
000617187 650_7 $$2autogen$$aLattice QCD
000617187 650_7 $$2autogen$$aNon-Perturbative Renormalization
000617187 650_7 $$2autogen$$aStandard Model Parameters
000617187 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000617187 7001_ $$0P:(DE-H253)PIP1086528$$aHöllwieser, Roman$$b1
000617187 7001_ $$0P:(DE-H253)PIP1093357$$aKnechtli, Francesco$$b2
000617187 7001_ $$0P:(DE-H253)PIP1019728$$aKorzec, Tomasz$$b3
000617187 7001_ $$0P:(DE-H253)PIP1019836$$aSint, Stefan$$b4
000617187 7001_ $$0P:(DE-H253)PIP1003629$$aSommer, Rainer$$b5
000617187 7001_ $$0P:(DE-HGF)0$$aALPHA Collaboration$$b6$$eCollaboration author
000617187 77318 $$2Crossref$$3journal-article$$a10.1007/jhep01(2024)188$$bSpringer Science and Business Media LLC$$d2024-01-31$$n1$$p188$$tJournal of High Energy Physics$$v2024$$x1029-8479$$y2024
000617187 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP01(2024)188$$gVol. 2024, no. 01, p. 188$$n1$$p188$$tJournal of high energy physics$$v2024$$x1029-8479$$y2024
000617187 7870_ $$0PUBDB-2023-07490$$aSommer, Rainer$$d$$iIsParent$$rDESY-24-001$$tHeavy Wilson Quarks and O($a$) Improvement: Nonperturbative Results for $b_g$
000617187 8564_ $$uhttps://bib-pubdb1.desy.de/record/617187/files/JHEP01%282024%29188.pdf$$yOpenAccess
000617187 8564_ $$uhttps://bib-pubdb1.desy.de/record/617187/files/JHEP01%282024%29188.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000617187 909CO $$ooai:bib-pubdb1.desy.de:617187$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000617187 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018317$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000617187 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086528$$aExternal Institute$$b1$$kExtern
000617187 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093357$$aExternal Institute$$b2$$kExtern
000617187 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019728$$aExternal Institute$$b3$$kExtern
000617187 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003629$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000617187 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000617187 9141_ $$y2024
000617187 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000617187 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000617187 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000617187 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z
000617187 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z
000617187 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000617187 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000617187 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-24
000617187 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z
000617187 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger
000617187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000617187 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000617187 9201_ $$0I:(DE-H253)Z_ZPPT-20210408$$kZ_ZPPT$$lZeuthen Particle PhysicsTheory$$x0
000617187 980__ $$ajournal
000617187 980__ $$aVDB
000617187 980__ $$aUNRESTRICTED
000617187 980__ $$aI:(DE-H253)Z_ZPPT-20210408
000617187 9801_ $$aFullTexts
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10998-3$$uALPHA collaboration, Determination of αs(mZ) by the non-perturbative decoupling method, Eur. Phys. J. C 82 (2022) 1092 [arXiv:2209.14204] [INSPIRE].
000617187 999C5 $$1B Sheikholeslami$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(85)90002-1$$p572 -$$tNucl. Phys. B$$uB. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].$$v259$$y1985
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(96)00378-1$$uM. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys. B 478 (1996) 365 [hep-lat/9605038] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(96)00020-X$$uS. Sint and R. Sommer, The running coupling from the QCD Schrödinger functional: a one loop analysis, Nucl. Phys. B 465 (1996) 71 [hep-lat/9508012] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2020.135571$$uALPHA collaboration, Non-perturbative renormalization by decoupling, Phys. Lett. B 807 (2020) 135571 [arXiv:1912.06001] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(97)01444-5$$uG.M. de Divitiis and R. Petronzio, Nonperturbative renormalization constants on the lattice from flavor nonsinglet Ward identities, Phys. Lett. B 419 (1998) 311 [hep-lat/9710071] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(00)00675-1$$uALPHA collaboration, Nonperturbative results for the coefficients bm and bA − bP in O(a) improved lattice QCD, Nucl. Phys. B 595 (2001) 44 [hep-lat/0009021] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.63.074505$$uT. Bhattacharya, R. Gupta, W.-J. Lee and S.R. Sharpe, Order a improved renormalization constants, Phys. Rev. D 63 (2001) 074505 [hep-lat/0009038] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.73.114507$$uT. Bhattacharya, R. Gupta, W. Lee and S.R. Sharpe, Scaling behavior of discretization errors in renormalization and improvement constants, Phys. Rev. D 73 (2006) 114507 [hep-lat/0509160] [INSPIRE].
000617187 999C5 $$1P Fritzsch$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2010)074$$p074 -$$tJHEP$$uP. Fritzsch, J. Heitger and N. Tantalo, Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD, JHEP 08 (2010) 074 [arXiv:1004.3978] [INSPIRE].$$v08$$y2010
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.256.0190$$uP. Korcyl and G.S. Bali, Non-perturbative determination of improvement coefficients using coordinate space correlators in Nf = 2 + 1 lattice QCD, Phys. Rev. D 95 (2017) 014505 [arXiv:1607.07090] [INSPIRE].
000617187 999C5 $$1P Fritzsch$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2018)015$$p015 -$$tJHEP$$uP. Fritzsch, Mass-improvement of the vector current in three-flavor QCD, JHEP 06 (2018) 015 [arXiv:1805.07401] [INSPIRE].$$v06$$y2018
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.014519$$uA. Gerardin, T. Harris and H.B. Meyer, Nonperturbative renormalization and O(a)-improvement of the nonsinglet vector current with Nf = 2 + 1 Wilson fermions and tree-level Symanzik improved gauge action, Phys. Rev. D 99 (2019) 014519 [arXiv:1811.08209] [INSPIRE].
000617187 999C5 $$2Crossref$$uALPHA collaboration, Non-perturbative determination of improvement coefficients bm and bA − bP and normalisation factor ZmZP/ZA with Nf = 3 Wilson fermions, Eur. Phys. J. C 79 (2019) 797 [arXiv:1906.03445] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(97)01007-1$$uG. Martinelli et al., Nonperturbative improvement of composite operators with Wilson fermions, Phys. Lett. B 411 (1997) 141 [hep-lat/9705018] [INSPIRE].
000617187 999C5 $$1J Bulava$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2013.05.019$$p188 -$$tNucl. Phys. B$$uJ. Bulava and S. Schaefer, Improvement of Nf = 3 lattice QCD with Wilson fermions and tree-level improved gauge action, Nucl. Phys. B 874 (2013) 188 [arXiv:1304.7093] [INSPIRE].$$v874$$y2013
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01205792$$uM. Lüscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 98 (1985) 433 [Erratum ibid. 98 (1985) 433] [INSPIRE].
000617187 999C5 $$1M Bruno$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2015)043$$p043 -$$tJHEP$$uM. Bruno et al., Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively improved Wilson fermions, JHEP 02 (2015) 043 [arXiv:1411.3982] [INSPIRE].$$v02$$y2015
000617187 999C5 $$2Crossref$$uStatus of CLS configurations for N f = 2 + 1 flavours, https://www-zeuthen.desy.de/alpha/public-cls-nf21/.
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.73.034504$$uT. Bhattacharya et al., Improved bilinears in lattice QCD with non-degenerate quarks, Phys. Rev. D 73 (2006) 034504 [hep-lat/0511014] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0920-5632(99)85048-8$$uS. Sint, Renormalization of the iso-singlet scalar density in lattice QCD with Wilson quarks, Nucl. Phys. B Proc. Suppl. 73 (1999) 282 [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(92)90466-O$$uM. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: a renormalizable probe for non-Abelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(94)90228-3$$uS. Sint, On the Schrodinger functional in QCD, Nucl. Phys. B 421 (1994) 135 [hep-lat/9312079] [INSPIRE].
000617187 999C5 $$1PH Ginsparg$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.25.2649$$p2649 -$$tPhys. Rev. D$$uP.H. Ginsparg and K.G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D 25 (1982) 2649 [INSPIRE].$$v25$$y1982
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(98)00399-X$$uP. Hasenfratz, Lattice QCD without tuning, mixing and current renormalization, Nucl. Phys. B 525 (1998) 401 [hep-lat/9802007] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(97)01368-3$$uH. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141 [hep-lat/9707022] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(98)00423-7$$uM. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B 428 (1998) 342 [hep-lat/9802011] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(98)00680-4$$uM. Lüscher, Topology and the axial anomaly in Abelian lattice gauge theories, Nucl. Phys. B 538 (1999) 515 [hep-lat/9808021] [INSPIRE].
000617187 999C5 $$1M Dalla Brida$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2020)043$$p043 -$$tJHEP$$uM. Dalla Brida, L. Giusti and M. Pepe, Non-perturbative definition of the QCD energy-momentum tensor on the lattice, JHEP 04 (2020) 043 [arXiv:2002.06897] [INSPIRE].$$v04$$y2020
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2001/08/058$$uAlpha collaboration, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [INSPIRE].
000617187 999C5 $$1R Narayanan$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/03/064$$p064 -$$tJHEP$$uR. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 03 (2006) 064 [hep-th/0601210] [INSPIRE].$$v03$$y2006
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2010)071$$uM. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE].
000617187 999C5 $$1S Sint$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2011.02.002$$p491 -$$tNucl. Phys. B$$uS. Sint, The chirally rotated Schrödinger functional with Wilson fermions and automatic O(a) improvement, Nucl. Phys. B 847 (2011) 491 [arXiv:1008.4857] [INSPIRE].$$v847$$y2011
000617187 999C5 $$1M Dalla Brida$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2016)102$$p102 -$$tJHEP$$uM. Dalla Brida, S. Sint and P. Vilaseca, The chirally rotated Schrödinger functional: theoretical expectations and perturbative tests, JHEP 08 (2016) 102 [arXiv:1603.00046] [INSPIRE].$$v08$$y2016
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-6514-5$$uM. Dalla Brida, T. Korzec, S. Sint and P. Vilaseca, High precision renormalization of the flavour non-singlet Noether currents in lattice QCD with Wilson quarks, Eur. Phys. J. C 79 (2019) 23 [arXiv:1808.09236] [INSPIRE].
000617187 999C5 $$2Crossref$$uP. Fritzsch, A. Ramos and F. Stollenwerk, Critical slowing down and the gradient flow coupling in the Schrödinger functional, PoS Lattice2013 (2014) 461 [arXiv:1311.7304] [INSPIRE].
000617187 999C5 $$2Crossref$$uALPHA collaboration, Slow running of the gradient flow coupling from 200 MeV to 4 GeV in Nf = 3 QCD, Phys. Rev. D 95 (2017) 014507 [arXiv:1607.06423] [INSPIRE].
000617187 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2011)051$$p051 -$$tJHEP$$uM. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-Abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].$$v02$$y2011
000617187 999C5 $$1Z Fodor$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2012)007$$p007 -$$tJHEP$$uZ. Fodor et al., The Yang-Mills gradient flow in finite volume, JHEP 11 (2012) 007 [arXiv:1208.1051] [INSPIRE].$$v11$$y2012
000617187 999C5 $$1A Ramos$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3831-9$$p15 -$$tEur. Phys. J. C$$uA. Ramos and S. Sint, Symanzik improvement of the gradient flow in lattice gauge theories, Eur. Phys. J. C 76 (2016) 15 [arXiv:1508.05552] [INSPIRE].$$v76$$y2016
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.23.1815$$uM. Creutz, Monte Carlo study of renormalization in lattice gauge theory, Phys. Rev. D 23 (1981) 1815 [INSPIRE].
000617187 999C5 $$1RA Brandt$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.24.879$$p879 -$$tPhys. Rev. D$$uR.A. Brandt, F. Neri and M.-A. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].$$v24$$y1981
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.64.034504$$uA. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D 64 (2001) 034504 [hep-lat/0103029] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0920-5632(03)02577-5$$uALPHA collaboration, Static quarks with improved statistical precision, Nucl. Phys. B Proc. Suppl. 129 (2004) 346 [hep-lat/0309080] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2005/08/051$$uM. Della Morte, A. Shindler and R. Sommer, On lattice actions for static quarks, JHEP 08 (2005) 051 [hep-lat/0506008] [INSPIRE].
000617187 999C5 $$1A Grimbach$$2Crossref$$uA. Grimbach, D. Guazzini, F. Knechtli and F. Palombi, O(a) improvement of the HYP static axial and vector currents at one-loop order of perturbation theory, JHEP 03 (2008) 039 [arXiv:0802.0862] [INSPIRE].$$y2008
000617187 999C5 $$1M Donnellan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2011.03.013$$p45 -$$tNucl. Phys. B$$uM. Donnellan, F. Knechtli, B. Leder and R. Sommer, Determination of the static potential with dynamical fermions, Nucl. Phys. B 849 (2011) 45 [arXiv:1012.3037] [INSPIRE].$$v849$$y2011
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(01)00582-X$$uS. Necco and R. Sommer, The Nf = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008] [INSPIRE].
000617187 999C5 $$1S Duane$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(87)91197-X$$p216 -$$tPhys. Lett. B$$uS. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [INSPIRE].$$v195$$y1987
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(01)01102-9$$uM. Hasenbusch, Speeding up the hybrid Monte Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 [hep-lat/0107019] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0920-5632(99)85217-7$$uA.D. Kennedy, I. Horvath and S. Sint, A new exact method for dynamical fermion computations with nonlocal actions, Nucl. Phys. B Proc. Suppl. 73 (1999) 834 [hep-lat/9809092] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.051601$$uM.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].
000617187 999C5 $$1JC Sexton$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(92)90263-B$$p665 -$$tNucl. Phys. B$$uJ.C. Sexton and D.H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].$$v380$$y1992
000617187 999C5 $$1M Lüscher$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2012.10.003$$p519 -$$tComput. Phys. Commun.$$uM. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].$$v184$$y2013
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.453.0147$$uM. Costa, D. Gavriel, H. Panagopoulos and G. Spanoudes, Mass effects on the QCD β-function, in the proceedings of the 40th international symposium on lattice field theory, (2023) [arXiv:2311.15796] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(98)00772-X$$uAlpha collaboration, Two loop computation of the Schrödinger functional in pure SU(3) lattice gauge theory, Nucl. Phys. B 540 (1999) 491 [hep-lat/9809175] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(01)00045-1$$uALPHA collaboration, Two loop computation of the Schrödinger functional in lattice QCD, Nucl. Phys. B 576 (2000) 517 [Erratum ibid. 608 (2001) 481] [Erratum ibid. 600 (2001) 453] [hep-lat/9911018] [INSPIRE].
000617187 999C5 $$1I Omelyan$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(02)00754-3$$p272 -$$tComput. Phys. Commun.$$uI. Omelyan, I. Mryglod and R. Folk, Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations, Comput. Phys. Commun. 151 (2003) 272.$$v151$$y2003
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.392.0045$$uA. Ramos, Automatic differentiation for error analysis, PoS TOOLS2020 (2021) 045 [arXiv:2012.11183] [INSPIRE].
000617187 999C5 $$1A Ramos$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2018.12.020$$p19 -$$tComput. Phys. Commun.$$uA. Ramos, Automatic differentiation for error analysis of Monte Carlo data, Comput. Phys. Commun. 238 (2019) 19 [arXiv:1809.01289] [INSPIRE].$$v238$$y2019
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2023.108750$$uF. Joswig, S. Kuberski, J.T. Kuhlmann and J. Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data, Comput. Phys. Commun. 288 (2023) 108750 [arXiv:2209.14371] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(03)00467-3$$uALPHA collaboration, Monte Carlo errors with less errors, Comput. Phys. Commun. 156 (2004) 143 [Erratum ibid. 176 (2007) 383] [hep-lat/0306017] [INSPIRE].
000617187 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2010.11.020$$uALPHA collaboration, Critical slowing down and error analysis in lattice QCD simulations, Nucl. Phys. B 845 (2011) 93 [arXiv:1009.5228] [INSPIRE].