000617174 001__ 617174
000617174 005__ 20250723172637.0
000617174 020__ $$a979-8-3503-6547-4
000617174 0247_ $$2doi$$a10.1109/CVPRW63382.2024.00010
000617174 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06635
000617174 0247_ $$2openalex$$aopenalex:W4402917071
000617174 037__ $$aPUBDB-2024-06635
000617174 041__ $$aEnglish
000617174 1001_ $$0P:(DE-H253)PIP1106508$$aWong, Tak Ming$$b0$$eCorresponding author
000617174 1112_ $$a2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops$$cSeattle$$d2024-06-17 - 2024-06-18$$g(CVPRW)$$wUSA
000617174 245__ $$aVolRAFT: Volumetric Optical Flow Network for Digital Volume Correlation of Synchrotron Radiation-based Micro-CT Images of Bone-Implant Interfaces
000617174 260__ $$aPiscataway, NJ$$bIEEE$$c2024
000617174 29510 $$a[Ebook] 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops : CVPRW 2024 : Seattle, Washington, USA, 16-22 June 2024 : proceedings / , Piscataway, NJ : IEEE, 2024,
000617174 300__ $$a53 - 62
000617174 3367_ $$2ORCID$$aCONFERENCE_PAPER
000617174 3367_ $$033$$2EndNote$$aConference Paper
000617174 3367_ $$2BibTeX$$aINPROCEEDINGS
000617174 3367_ $$2DRIVER$$aconferenceObject
000617174 3367_ $$2DataCite$$aOutput Types/Conference Paper
000617174 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1736343799_3463986
000617174 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000617174 520__ $$aIn materials science research, digital volume correlation (DVC) analysis is commonly used to track deformations and strains to elucidate morphology-function relationships. Optical flow-based DVC is particularly popular because of its robustness to estimate the correlation as a dense deformation vector. Recently, computer vision researchers showed that network-based optical flow approaches can outperform classical iterative optical flow approaches. In this paper, we propose a supervised machine learning approach for digital volume correlation, VolRAFT, that estimates the 3D displacement vector between the reference volume and the deformed volume. The proposed approach extends the state-of-the-art network-based optical flow method, RAFT, from 2D images to 3D volumes such that it predicts the volumetric displacement vector from the input volume pairs. Experiments show that the proposed network performs well in estimating different displacement fields when compared to cutting-edge iterative DVC methods for bone-implant materials based on high resolution synchrotron-radiation micro-computed tomography imaging data.
000617174 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000617174 536__ $$0G:(DE-Ds200)BMBF-05D23CG1$$a05D23CG1 - Verbundprojekt 05D2022 - KI4D4E: Ein KI-basiertes Framework für die Visualisierung und Auswertung der massiven Datenmengen der 4D-Tomographie für Endanwender von Beamlines. Teilprojekt 7. (BMBF-05D23CG1)$$cBMBF-05D23CG1$$f05D23CG1$$x1
000617174 536__ $$0G:(DE-H253)I-20180109$$aFS-Proposal: I-20180109 (I-20180109)$$cI-20180109$$x2
000617174 588__ $$aDataset connected to CrossRef Conference
000617174 693__ $$0EXP:(DE-H253)P-P05-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P05-20150101$$aPETRA III$$fPETRA Beamline P05$$x0
000617174 7001_ $$0P:(DE-H253)PIP1030371$$aMoosmann, Julian$$b1
000617174 7001_ $$0P:(DE-H253)PIP1031548$$aZeller-Plumhoff, Berit$$b2$$eCorresponding author
000617174 773__ $$a10.1109/CVPRW63382.2024.00010
000617174 8564_ $$uhttps://openaccess.thecvf.com/content/CVPR2024W/CV4MS/html/Wong_VolRAFT_Volumetric_Optical_Flow_Network_for_Digital_Volume_Correlation_of_CVPRW_2024_paper.html
000617174 8564_ $$uhttps://bib-pubdb1.desy.de/record/617174/files/VolRAFT_Volumetric_Optical_Flow_Network_for_Digital_Volume_Correlation_of_Synchrotron_Radiation-based_Micro-CT_Images_of_Bone-Implant_Interfaces.pdf$$yRestricted
000617174 8564_ $$uhttps://bib-pubdb1.desy.de/record/617174/files/VolRAFT_open_access.pdf$$yOpenAccess
000617174 8564_ $$uhttps://bib-pubdb1.desy.de/record/617174/files/VolRAFT_Volumetric_Optical_Flow_Network_for_Digital_Volume_Correlation_of_Synchrotron_Radiation-based_Micro-CT_Images_of_Bone-Implant_Interfaces.pdf?subformat=pdfa$$xpdfa$$yRestricted
000617174 8564_ $$uhttps://bib-pubdb1.desy.de/record/617174/files/VolRAFT_open_access.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000617174 909CO $$ooai:bib-pubdb1.desy.de:617174$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000617174 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1106508$$aExternal Institute$$b0$$kExtern
000617174 9101_ $$0I:(DE-588b)1231250402$$6P:(DE-H253)PIP1106508$$aHelmholtz-Zentrum Hereon$$b0$$kHereon
000617174 9101_ $$0I:(DE-588b)16087541-9$$6P:(DE-H253)PIP1030371$$aHelmholtz-Zentrum Geesthacht$$b1$$kHZG
000617174 9101_ $$0I:(DE-588b)1231250402$$6P:(DE-H253)PIP1030371$$aHelmholtz-Zentrum Hereon$$b1$$kHereon
000617174 9101_ $$0I:(DE-588b)16087541-9$$6P:(DE-H253)PIP1031548$$aHelmholtz-Zentrum Geesthacht$$b2$$kHZG
000617174 9101_ $$0I:(DE-588b)1231250402$$6P:(DE-H253)PIP1031548$$aHelmholtz-Zentrum Hereon$$b2$$kHereon
000617174 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000617174 9141_ $$y2024
000617174 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000617174 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x0
000617174 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x1
000617174 980__ $$acontrib
000617174 980__ $$aVDB
000617174 980__ $$aUNRESTRICTED
000617174 980__ $$acontb
000617174 980__ $$aI:(DE-H253)Hereon-20210428
000617174 980__ $$aI:(DE-H253)HAS-User-20120731
000617174 9801_ $$aFullTexts