TY  - JOUR
AU  - Chuchurka, Stasis
AU  - Sukharnikov, Vladislav
AU  - Rohringer, Nina
TI  - Hermitian stochastic methodology for x-ray superfluorescence
JO  - Physical review / A
VL  - 109
IS  - 6
SN  - 2469-9926
CY  - Woodbury, NY
PB  - Inst.
M1  - PUBDB-2024-06623
M1  - arXiv:2402.04069
SP  - 063705
PY  - 2024
AB  - A recently introduced theoretical framework for modeling the dynamics of x-ray amplified spontaneous emission is based on stochastic sampling of the density matrix of quantum emitters and the radiation field, similarly to other phase-space sampling techniques. While based on first principles and providing valuable theoretical insights, the original stochastic differential equations exhibit divergences and numerical instabilities. Here, we resolve this issue by accounting the stochastic components perturbatively. The refined formalism accurately reproduces the properties of spontaneous emission and proves universally applicable for describing all stages of collective x-ray emission in paraxial geometry, including spontaneous emission, amplified spontaneous emission, and the nonlinear regime. Through numerical examples, we analyze key features of superfluorescence in a one-dimensional approximation. Importantly, single realizations of the underlying stochastic equations can be fully interpreted as individual experimental observations of superfluorescence.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:001248756600005
DO  - DOI:10.1103/PhysRevA.109.063705
UR  - https://bib-pubdb1.desy.de/record/617133
ER  -