Home > Publications database > Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique > print |
001 | 616885 | ||
005 | 20250723172625.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-52740-5 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-06566 |2 datacite_doi |
024 | 7 | _ | |a altmetric:169348956 |2 altmetric |
024 | 7 | _ | |a pmid:39406706 |2 pmid |
024 | 7 | _ | |a WOS:001337260300003 |2 WOS |
024 | 7 | _ | |a openalex:W4403412567 |2 openalex |
037 | _ | _ | |a PUBDB-2024-06566 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Muchova, Eva |0 P:(DE-H253)PIP1104167 |b 0 |e Corresponding author |
245 | _ | _ | |a Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1730902051_540641 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Open Access |
520 | _ | _ | |a Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger–Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a FS-Proposal: I-20190339 (I-20190339) |0 G:(DE-H253)I-20190339 |c I-20190339 |x 2 |
536 | _ | _ | |a AQUACHIRAL - Chiral aqueous-phase chemistry (883759) |0 G:(EU-Grant)883759 |c 883759 |f ERC-2019-ADG |x 3 |
536 | _ | _ | |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550) |0 G:(GEPRIS)509471550 |c 509471550 |x 4 |
542 | _ | _ | |i 2024-10-16 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-10-16 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P04 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P04-20150101 |6 EXP:(DE-H253)P-P04-20150101 |x 0 |
700 | 1 | _ | |a Gopakumar, Geethanjali |0 P:(DE-H253)PIP1083691 |b 1 |
700 | 1 | _ | |a Unger, Isaak |0 P:(DE-H253)PIP1083693 |b 2 |
700 | 1 | _ | |a Oehrwall, Gunnar |0 P:(DE-H253)PIP1025903 |b 3 |
700 | 1 | _ | |a Ceolin, Denis |0 P:(DE-H253)PIP1090413 |b 4 |
700 | 1 | _ | |a Trinter, Florian |0 P:(DE-H253)PIP1017364 |b 5 |
700 | 1 | _ | |a Wilkinson, Iain |0 P:(DE-H253)PIP1086922 |b 6 |
700 | 1 | _ | |a Chatzigeorgiou, E. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Slavicek, Petr |0 P:(DE-H253)PIP1102083 |b 8 |
700 | 1 | _ | |a Hergenhahn, Uwe |0 P:(DE-H253)PIP1008114 |b 9 |
700 | 1 | _ | |a Winter, Bernd |0 P:(DE-H253)PIP1023483 |b 10 |
700 | 1 | _ | |a Caleman, Carl |0 P:(DE-H253)PIP1011740 |b 11 |
700 | 1 | _ | |a Bjoerneholm, Olle |0 P:(DE-H253)PIP1083875 |b 12 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41467-024-52740-5 |b Springer Science and Business Media LLC |d 2024-10-16 |n 1 |p 8903 |3 journal-article |2 Crossref |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-024-52740-5 |g Vol. 15, no. 1, p. 8903 |0 PERI:(DE-600)2553671-0 |n 1 |p 8903 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://www.nature.com/articles/s41467-024-52740-5 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/616885/files/Muchova_NatCommun_2024.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/616885/files/Muchova_NatCommun_2024.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:616885 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1104167 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1104167 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1083691 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1083691 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1083693 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1083693 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1083693 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1025903 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1090413 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1017364 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1017364 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1086922 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1102083 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1102083 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1008114 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1023483 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1011740 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 11 |6 P:(DE-H253)PIP1011740 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1083875 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 12 |6 P:(DE-H253)PIP1083875 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1021/cr030453x |9 -- missing cx lookup -- |1 BC Garrett |p 355 - |2 Crossref |u Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355–390 (2005). |t Chem. Rev. |v 105 |y 2005 |
999 | C | 5 | |a 10.1103/RevModPhys.14.112 |9 -- missing cx lookup -- |1 E Rabinowitch |p 112 - |2 Crossref |u Rabinowitch, E. Electron transfer spectra and their photochemical effects. Rev. Mod. Phys. 14, 112 (1942). |t Rev. Mod. Phys. |v 14 |y 1942 |
999 | C | 5 | |a 10.1021/cr60263a002 |9 -- missing cx lookup -- |1 MJ Blandamer |p 59 - |2 Crossref |u Blandamer, M. J. & Fox, M. F. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev. 70, 59–93 (1970). |t Chem. Rev. |v 70 |y 1970 |
999 | C | 5 | |a 10.1146/annurev.physchem.58.032806.104702 |9 -- missing cx lookup -- |1 X Chen |p 203 - |2 Crossref |u Chen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59, 203–231 (2008). |t Annu. Rev. Phys. Chem. |v 59 |y 2008 |
999 | C | 5 | |a 10.1039/c0cp00847h |9 -- missing cx lookup -- |1 A Lübcke |p 14629 - |2 Crossref |u Lübcke, A., Buchner, F., Heine, N., Hertel, I. V. & Schultz, T. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12, 14629–14634 (2010). |t Phys. Chem. Chem. Phys. |v 12 |y 2010 |
999 | C | 5 | |a 10.1039/c0sc00650e |9 -- missing cx lookup -- |1 Y-I Suzuki |p 1094 - |2 Crossref |u Suzuki, Y.-I. et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I− to water in aqueous NaI solution. Chem. Sci. 2, 1094–1102 (2011). |t Chem. Sci. |v 2 |y 2011 |
999 | C | 5 | |a 10.1038/ncomms3119 |1 F Messina |9 -- missing cx lookup -- |2 Crossref |u Messina, F., Bräm, O., Cannizzo, A. & Chergui, M. Real-time observation of the charge transfer to solvent dynamics. Nat. Commun. 4, 2119 (2013). |t Nat. Commun. |v 4 |y 2013 |
999 | C | 5 | |a 10.1126/science.1246291 |9 -- missing cx lookup -- |1 MH Elkins |p 1496 - |2 Crossref |u Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013). |t Science |v 342 |y 2013 |
999 | C | 5 | |a 10.1021/acs.jpclett.9b01750 |9 -- missing cx lookup -- |1 S Karashima |p 4499 - |2 Crossref |u Karashima, S., Yamamoto, Y.-i & Suzuki, T. Ultrafast internal conversion and solvation of electrons in water, methanol, and ethanol. J. Phys. Chem. Lett. 10, 4499–4504 (2019). |t J. Phys. Chem. Lett. |v 10 |y 2019 |
999 | C | 5 | |a 10.1021/acs.jpclett.2c03460 |9 -- missing cx lookup -- |1 K Carter-Fenk |p 870 - |2 Crossref |u Carter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett. 14, 870–878 (2023). |t J. Phys. Chem. Lett. |v 14 |y 2023 |
999 | C | 5 | |a 10.1038/s41467-024-46772-0 |1 J Lan |9 -- missing cx lookup -- |2 Crossref |u Lan, J., Chergui, M. & Pasquarello, A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat. Commun. 15, 2544 (2024). |t Nat. Commun. |v 15 |y 2024 |
999 | C | 5 | |a 10.1038/nchem.580 |9 -- missing cx lookup -- |1 KR Siefermann |p 274 - |2 Crossref |u Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010). |t Nat. Chem. |v 2 |y 2010 |
999 | C | 5 | |a 10.1021/acs.chemrev.6b00453 |9 -- missing cx lookup -- |1 M Nisoli |p 10760 - |2 Crossref |u Nisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017). |t Chem. Rev. |v 117 |y 2017 |
999 | C | 5 | |a 10.1021/acs.jpclett.1c02016 |9 -- missing cx lookup -- |1 ICD Merritt |p 8404 - |2 Crossref |u Merritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett. 12, 8404–8415 (2021). |t J. Phys. Chem. Lett. |v 12 |y 2021 |
999 | C | 5 | |a 10.1038/s42004-023-00989-0 |9 -- missing cx lookup -- |1 F Calegari |p 184 - |2 Crossref |u Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem. 6, 184 (2023). |t Commun. Chem. |v 6 |y 2023 |
999 | C | 5 | |a 10.1088/1361-6633/ac5e7f |9 -- missing cx lookup -- |1 R Borrego-Varillas |p 066401 - |2 Crossref |u Borrego-Varillas, R., Lucchini, M. & Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys. 85, 066401 (2022). |t Rep. Prog. Phys. |v 85 |y 2022 |
999 | C | 5 | |a 10.1126/science.abj2096 |9 -- missing cx lookup -- |1 S Li |p 285 - |2 Crossref |u Li, S. et al. Attosecond coherent electron motion in Auger–Meitner decay. Science 375, 285–290 (2022). |t Science |v 375 |y 2022 |
999 | C | 5 | |a 10.1126/science.adn6059 |9 -- missing cx lookup -- |1 S Li |p 1118 - |2 Crossref |u Li, S. et al. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024). |t Science |v 383 |y 2024 |
999 | C | 5 | |a 10.1126/sciadv.aat3962 |9 -- missing cx lookup -- |1 RY Bello |p eaat3962 - |2 Crossref |u Bello, R. Y. et al. Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. Sci. Adv. 4, eaat3962 (2018). |t Sci. Adv. |v 4 |y 2018 |
999 | C | 5 | |a 10.1126/science.abb9318 |9 -- missing cx lookup -- |1 S Grundmann |p 339 - |2 Crossref |u Grundmann, S. et al. Zeptosecond birth time delay in molecular photoionization. Science 370, 339–341 (2020). |t Science |v 370 |y 2020 |
999 | C | 5 | |a 10.1038/s41467-021-26994-2 |1 J Rist |9 -- missing cx lookup -- |2 Crossref |u Rist, J. et al. Measuring the photoelectron emission delay in the molecular frame. Nat. Commun. 12, 6657 (2021). |t Nat. Commun. |v 12 |y 2021 |
999 | C | 5 | |a 10.1038/s41467-021-27360-y |1 F Holzmeier |9 -- missing cx lookup -- |2 Crossref |u Holzmeier, F. et al. Influence of shape resonances on the angular dependence of molecular photoionization delays. Nat. Commun. 12, 7343 (2021). |t Nat. Commun. |v 12 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevLett.68.1892 |9 -- missing cx lookup -- |1 O Björneholm |p 1892 - |2 Crossref |u Björneholm, O., Nilsson, A., Sandell, A., Hernnäs, B. & Mårtensson, N. Determination of time scales for charge-transfer screening in physisorbed molecules. Phys. Rev. Lett. 68, 1892 (1992). |t Phys. Rev. Lett. |v 68 |y 1992 |
999 | C | 5 | |a 10.1016/S0301-0104(99)00305-5 |9 -- missing cx lookup -- |1 W Wurth |p 141 - |2 Crossref |u Wurth, W. & Menzel, D. Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy. Chem. Phys. 251, 141–149 (2000). |t Chem. Phys. |v 251 |y 2000 |
999 | C | 5 | |a 10.1103/RevModPhys.74.703 |9 -- missing cx lookup -- |1 PA Brühwiler |p 703 - |2 Crossref |u Brühwiler, P. A., Karis, O. & Mårtensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703 (2002). |t Rev. Mod. Phys. |v 74 |y 2002 |
999 | C | 5 | |a 10.1038/nature03833 |9 -- missing cx lookup -- |1 A Föhlisch |p 373 - |2 Crossref |u Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005). |t Nature |v 436 |y 2005 |
999 | C | 5 | |a 10.1016/0368-2048(94)02292-5 |9 -- missing cx lookup -- |1 H Aksela |p 235 - |2 Crossref |u Aksela, H. Resonant Auger spectroscopy of atoms and molecules. J. Electron Spectrosc. Relat. Phenom 72, 235–242 (1995). |t J. Electron Spectrosc. Relat. Phenom |v 72 |y 1995 |
999 | C | 5 | |a 10.1103/PhysRevA.107.032802 |9 -- missing cx lookup -- |1 FOL Johansson |p 032802 - |2 Crossref |u Johansson, F. O. L. et al. Resonant Auger spectroscopy on solid xenon on gold, silver, and copper substrates. Phys. Rev. A 107, 032802 (2023). |t Phys. Rev. A |v 107 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevA.58.1988 |9 -- missing cx lookup -- |1 RF Fink |p 1988 - |2 Crossref |u Fink, R. F., Kivilompolo, M., Aksela, H. & Aksela, S. Spin–orbit interaction and molecular-field effects in the L2,3VV Auger-electron spectra of HCl. Phys. Rev. A 58, 1988 (1998). |t Phys. Rev. A |v 58 |y 1998 |
999 | C | 5 | |a 10.1021/ja8009742 |9 -- missing cx lookup -- |1 B Winter |p 7130 - |2 Crossref |u Winter, B. et al. Electron dynamics in charge-transfer-to-solvent states of aqueous chloride revealed by Cl− 2p resonant auger-electron spectroscopy. J. Am. Chem. Soc. 130, 7130–7138 (2008). |t J. Am. Chem. Soc. |v 130 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevLett.99.217406 |9 -- missing cx lookup -- |1 D Nordlund |p 217406 - |2 Crossref |u Nordlund, D. et al. Probing the electron delocalization in liquid water and ice at attosecond time scales. Phys. Rev. Lett. 99, 217406 (2007). |t Phys. Rev. Lett. |v 99 |y 2007 |
999 | C | 5 | |a 10.1021/ja204100j |9 -- missing cx lookup -- |1 N Ottosson |p 13489 - |2 Crossref |u Ottosson, N. et al. Cations strongly reduce electron-hopping rates in aqueous solutions. J. Am. Chem. Soc. 133, 13489–13495 (2011). |t J. Am. Chem. Soc. |v 133 |y 2011 |
999 | C | 5 | |a 10.1021/acs.chemrev.0c00106 |9 -- missing cx lookup -- |1 T Jahnke |p 11295 - |2 Crossref |u Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020). |t Chem. Rev. |v 120 |y 2020 |
999 | C | 5 | |a 10.1021/jp108956v |9 -- missing cx lookup -- |1 G Öhrwall |p 17057 - |2 Crossref |u Öhrwall, G. et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057–17061 (2010). |t J. Phys. Chem. B |v 114 |y 2010 |
999 | C | 5 | |a 10.1021/ja203430s |9 -- missing cx lookup -- |1 W Pokapanich |p 13430 - |2 Crossref |u Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole-clock. J. Am. Chem. Soc. 133, 13430–13436 (2011). |t J. Am. Chem. Soc. |v 133 |y 2011 |
999 | C | 5 | |a 10.1039/D2CP00227B |9 -- missing cx lookup -- |1 G Gopakumar |p 8661 - |2 Crossref |u Gopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022). |t Phys. Chem. Chem. Phys. |v 24 |y 2022 |
999 | C | 5 | |a 10.1021/acs.jpclett.8b01783 |9 -- missing cx lookup -- |1 T Miteva |p 4457 - |2 Crossref |u Miteva, T. et al. The all-seeing eye of resonant Auger electron spectroscopy: a study on aqueous solution using tender X-rays. J. Phys. Chem. Lett. 9, 4457–4462 (2018). |t J. Phys. Chem. Lett. |v 9 |y 2018 |
999 | C | 5 | |a 10.1038/s41598-017-00756-x |1 D Hollas |9 -- missing cx lookup -- |2 Crossref |u Hollas, D. et al. Aqueous solution chemistry of ammonium cation in the Auger time window. Sci. Rep. 7, 756 (2017). |t Sci. Rep. |v 7 |y 2017 |
999 | C | 5 | |a 10.1006/adnd.2000.0848 |9 -- missing cx lookup -- |1 JL Campbell |p 1 - |2 Crossref |u Campbell, J. L. & Papp, T. Widths of the atomic K-N7 levels. At. Data Nucl. Data Tables 77, 1–56 (2001). |t At. Data Nucl. Data Tables |v 77 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRevB.76.235406 |9 -- missing cx lookup -- |1 D Sánchez-Portal |p 235406 - |2 Crossref |u Sánchez-Portal, D., Menzel, D. & Echenique, P. M. First-principles calculation of charge transfer at surfaces: the case of core-excited $${{{{\rm{Ar}}}}}^{*}(2{{p}}_{3/2}^{-1}4s)$$ on Ru(0001). Phys. Rev. B 76, 235406 (2007). |t Phys. Rev. B |v 76 |y 2007 |
999 | C | 5 | |1 RG Forbes |y 2011 |2 Crossref |u Forbes, R. G. & Deane, J. H. B. Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. Math. Phys. Eng. Sci. 467, 2927–2947 (2011). |
999 | C | 5 | |a 10.1063/1.1979487 |9 -- missing cx lookup -- |1 P Cabral do Couto |p 054510 - |2 Crossref |u Cabral do Couto, P., Estácio, S. G. & Costa Cabral, B. J. The Kohn–Sham density of states and band gap of water: from small clusters to liquid water. J. Chem. Phys. 123, 054510 (2005). |t J. Chem. Phys. |v 123 |y 2005 |
999 | C | 5 | |a 10.1063/1.1940612 |9 -- missing cx lookup -- |1 D Prendergast |p 014501 - |2 Crossref |u Prendergast, D., Grossman, J. C. & Galli, G. The electronic structure of liquid water within density-functional theory. J. Chem. Phys. 123, 014501 (2005). |t J. Chem. Phys. |v 123 |y 2005 |
999 | C | 5 | |a 10.1039/C4CP04202F |9 -- missing cx lookup -- |1 C Fang |p 365 - |2 Crossref |u Fang, C. et al. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations. Phys. Chem. Chem. Phys. 17, 365–375 (2015). |t Phys. Chem. Chem. Phys. |v 17 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevResearch.3.023182 |9 -- missing cx lookup -- |1 T Bischoff |p 023182 - |2 Crossref |u Bischoff, T., Reshetnyak, I. & Pasquarello, A. Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. Phys. Rev. Res. 3, 023182 (2021). |t Phys. Rev. Res. |v 3 |y 2021 |
999 | C | 5 | |a 10.1021/acs.chemrev.5b00672 |9 -- missing cx lookup -- |1 T Fransson |p 7551 - |2 Crossref |u Fransson, T. et al. X-ray and electron spectroscopy of water. Chem. Rev. 116, 7551–7569 (2016). |t Chem. Rev. |v 116 |y 2016 |
999 | C | 5 | |a 10.1126/sciadv.aba7762 |9 -- missing cx lookup -- |1 S Nandi |p eaba7762 - |2 Crossref |u Nandi, S. et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 6, eaba7762 (2020). |t Sci. Adv. |v 6 |y 2020 |
999 | C | 5 | |a 10.1126/science.aah6972 |9 -- missing cx lookup -- |1 A Kaldun |p 738 - |2 Crossref |u Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016). |t Science |v 354 |y 2016 |
999 | C | 5 | |a 10.1126/science.aah5188 |9 -- missing cx lookup -- |1 V Gruson |p 734 - |2 Crossref |u Gruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016). |t Science |v 354 |y 2016 |
999 | C | 5 | |a 10.1016/j.nima.2012.10.110 |9 -- missing cx lookup -- |1 J Viefhaus |p 151 - |2 Crossref |u Viefhaus, J. et al. The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. Sect. A 710, 151–154 (2013). |t Nucl. Instrum. Methods Phys. Res. Sect. A |v 710 |y 2013 |
999 | C | 5 | |a 10.1063/5.0072346 |9 -- missing cx lookup -- |1 S Malerz |p 015101 - |2 Crossref |u Malerz, S. et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 93, 015101 (2022). |t Rev. Sci. Instrum. |v 93 |y 2022 |
999 | C | 5 | |a 10.1107/S160057752100103X |9 -- missing cx lookup -- |1 S Zhu |p 624 - |2 Crossref |u Zhu, S. et al. HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory. J. Synchrotron Radiat. 28, 624–636 (2021). |t J. Synchrotron Radiat. |v 28 |y 2021 |
999 | C | 5 | |a 10.1021/acs.jpcb.5b03337 |9 -- missing cx lookup -- |1 R Seidel |p 10607 - |2 Crossref |u Seidel, R., Atak, K., Thürmer, S., Aziz, E. F. & Winter, B. Ti3+ aqueous solution: hybridization and electronic relaxation probed by state-dependent electron spectroscopy. J. Phys. Chem. B 119, 10607–10615 (2015). |t J. Phys. Chem. B |v 119 |y 2015 |
999 | C | 5 | |a 10.1021/jp302958j |9 -- missing cx lookup -- |1 M Blum |p 13757 - |2 Crossref |u Blum, M. et al. Ultrafast proton dynamics in aqueous amino acid solutions studied by resonant inelastic soft x-ray scattering. J. Phys. Chem. B 116, 13757–13764 (2012). |t J. Phys. Chem. B |v 116 |y 2012 |
999 | C | 5 | |2 Crossref |u Kukk, E. SPANCF—Spectrum Analysis by Curve Fitting—Macro Package for Igor Pro https://www.geocities.ws/ekukk/intro.htm#:~:text=In%20this%20approach%2C%20called%20%22curve,to%20the%20spectrum%20is%20obtained (2012). |
999 | C | 5 | |a 10.1038/s41557-023-01302-1 |9 -- missing cx lookup -- |1 G Gopakumar |p 1408 - |2 Crossref |u Gopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem. 15, 1408–1414 (2023). |t Nat. Chem. |v 15 |y 2023 |
999 | C | 5 | |a 10.1039/b912718f |9 -- missing cx lookup -- |1 NA Besley |p 10350 - |2 Crossref |u Besley, N. A., Peach, M. J. G. & Tozer, D. J. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys. 11, 10350–10358 (2009). |t Phys. Chem. Chem. Phys. |v 11 |y 2009 |
999 | C | 5 | |a 10.1021/acs.jctc.3c00673 |9 -- missing cx lookup -- |1 JM Herbert |p 6745 - |2 Crossref |u Herbert, J. M., Zhu, Y., Alam, B. & Ojha, A. K. Time-dependent density functional theory for x-ray absorption spectra: comparing the real-time approach to linear response. J. Chem. Theory Comput. 19, 6745–6760 (2023). |t J. Chem. Theory Comput. |v 19 |y 2023 |
999 | C | 5 | |a 10.1063/1.1520138 |9 -- missing cx lookup -- |1 KA Peterson |p 10548 - |2 Crossref |u Peterson, K. A. & Dunning, Jr, T. H. Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys. 117, 10548–10560 (2002). |t J. Chem. Phys. |v 117 |y 2002 |
999 | C | 5 | |a 10.1063/5.0055522 |9 -- missing cx lookup -- |1 E Epifanovsky |p 084801 - |2 Crossref |u Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys. 155, 084801 (2021). |t J. Chem. Phys. |v 155 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevA.90.052521 |9 -- missing cx lookup -- |1 SA Bäppler |p 052521 - |2 Crossref |u Bäppler, S. A., Plasser, F., Wormit, M. & Dreuw, A. Exciton analysis of many-body wave functions: bridging the gap between the quasiparticle and molecular orbital pictures. Phys. Rev. A 90, 052521 (2014). |t Phys. Rev. A |v 90 |y 2014 |
999 | C | 5 | |a 10.1002/jcc.23975 |9 -- missing cx lookup -- |1 F Plasser |p 1609 - |2 Crossref |u Plasser, F. et al. Statistical analysis of electronic excitation processes: spatial location, compactness, charge transfer, and electron–hole correlation. J. Comp. Chem. 36, 1609–1620 (2015). |t J. Comp. Chem. |v 36 |y 2015 |
999 | C | 5 | |a 10.1039/C5CP07077E |9 -- missing cx lookup -- |1 SA Mewes |p 2548 - |2 Crossref |u Mewes, S. A., Mewes, J.-M., Dreuw, A. & Plasser, F. Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations. Phys. Chem. Chem. Phys. 18, 2548–2563 (2016). |t Phys. Chem. Chem. Phys. |v 18 |y 2016 |
999 | C | 5 | |a 10.1063/1.5143076 |9 -- missing cx lookup -- |1 F Plasser |p 084108 - |2 Crossref |u Plasser, F. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 152, 084108 (2020). |t J. Chem. Phys. |v 152 |y 2020 |
999 | C | 5 | |a 10.1021/jp801738f |9 -- missing cx lookup -- |1 ATB Gilbert |p 13164 - |2 Crossref |u Gilbert, A. T. B., Besley, N. A. & Gill, P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A 112, 13164–13171 (2008). |t J. Phys. Chem. A |v 112 |y 2008 |
999 | C | 5 | |a 10.1063/5.0134459 |9 -- missing cx lookup -- |1 S Jana |p 094111 - |2 Crossref |u Jana, S. & Herbert, J. M. Slater transition methods for core-level electron binding energies. J. Chem. Phys. 158, 094111 (2023). |t J. Chem. Phys. |v 158 |y 2023 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|