001     616885
005     20250723172625.0
024 7 _ |a 10.1038/s41467-024-52740-5
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06566
|2 datacite_doi
024 7 _ |a altmetric:169348956
|2 altmetric
024 7 _ |a pmid:39406706
|2 pmid
024 7 _ |a WOS:001337260300003
|2 WOS
024 7 _ |a openalex:W4403412567
|2 openalex
037 _ _ |a PUBDB-2024-06566
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Muchova, Eva
|0 P:(DE-H253)PIP1104167
|b 0
|e Corresponding author
245 _ _ |a Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730902051_540641
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Open Access
520 _ _ |a Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger–Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20190339 (I-20190339)
|0 G:(DE-H253)I-20190339
|c I-20190339
|x 2
536 _ _ |a AQUACHIRAL - Chiral aqueous-phase chemistry (883759)
|0 G:(EU-Grant)883759
|c 883759
|f ERC-2019-ADG
|x 3
536 _ _ |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)
|0 G:(GEPRIS)509471550
|c 509471550
|x 4
542 _ _ |i 2024-10-16
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-10-16
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
700 1 _ |a Gopakumar, Geethanjali
|0 P:(DE-H253)PIP1083691
|b 1
700 1 _ |a Unger, Isaak
|0 P:(DE-H253)PIP1083693
|b 2
700 1 _ |a Oehrwall, Gunnar
|0 P:(DE-H253)PIP1025903
|b 3
700 1 _ |a Ceolin, Denis
|0 P:(DE-H253)PIP1090413
|b 4
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 5
700 1 _ |a Wilkinson, Iain
|0 P:(DE-H253)PIP1086922
|b 6
700 1 _ |a Chatzigeorgiou, E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Slavicek, Petr
|0 P:(DE-H253)PIP1102083
|b 8
700 1 _ |a Hergenhahn, Uwe
|0 P:(DE-H253)PIP1008114
|b 9
700 1 _ |a Winter, Bernd
|0 P:(DE-H253)PIP1023483
|b 10
700 1 _ |a Caleman, Carl
|0 P:(DE-H253)PIP1011740
|b 11
700 1 _ |a Bjoerneholm, Olle
|0 P:(DE-H253)PIP1083875
|b 12
|e Corresponding author
773 1 8 |a 10.1038/s41467-024-52740-5
|b Springer Science and Business Media LLC
|d 2024-10-16
|n 1
|p 8903
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-52740-5
|g Vol. 15, no. 1, p. 8903
|0 PERI:(DE-600)2553671-0
|n 1
|p 8903
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |u https://www.nature.com/articles/s41467-024-52740-5
856 4 _ |u https://bib-pubdb1.desy.de/record/616885/files/Muchova_NatCommun_2024.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/616885/files/Muchova_NatCommun_2024.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:616885
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1104167
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1104167
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1083691
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1083691
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1083693
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1083693
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1083693
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1025903
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1090413
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1086922
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1102083
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1102083
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1008114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1023483
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1011740
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 11
|6 P:(DE-H253)PIP1011740
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1083875
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1083875
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.1021/cr030453x
|9 -- missing cx lookup --
|1 BC Garrett
|p 355 -
|2 Crossref
|u Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355–390 (2005).
|t Chem. Rev.
|v 105
|y 2005
999 C 5 |a 10.1103/RevModPhys.14.112
|9 -- missing cx lookup --
|1 E Rabinowitch
|p 112 -
|2 Crossref
|u Rabinowitch, E. Electron transfer spectra and their photochemical effects. Rev. Mod. Phys. 14, 112 (1942).
|t Rev. Mod. Phys.
|v 14
|y 1942
999 C 5 |a 10.1021/cr60263a002
|9 -- missing cx lookup --
|1 MJ Blandamer
|p 59 -
|2 Crossref
|u Blandamer, M. J. & Fox, M. F. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev. 70, 59–93 (1970).
|t Chem. Rev.
|v 70
|y 1970
999 C 5 |a 10.1146/annurev.physchem.58.032806.104702
|9 -- missing cx lookup --
|1 X Chen
|p 203 -
|2 Crossref
|u Chen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59, 203–231 (2008).
|t Annu. Rev. Phys. Chem.
|v 59
|y 2008
999 C 5 |a 10.1039/c0cp00847h
|9 -- missing cx lookup --
|1 A Lübcke
|p 14629 -
|2 Crossref
|u Lübcke, A., Buchner, F., Heine, N., Hertel, I. V. & Schultz, T. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12, 14629–14634 (2010).
|t Phys. Chem. Chem. Phys.
|v 12
|y 2010
999 C 5 |a 10.1039/c0sc00650e
|9 -- missing cx lookup --
|1 Y-I Suzuki
|p 1094 -
|2 Crossref
|u Suzuki, Y.-I. et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I− to water in aqueous NaI solution. Chem. Sci. 2, 1094–1102 (2011).
|t Chem. Sci.
|v 2
|y 2011
999 C 5 |a 10.1038/ncomms3119
|1 F Messina
|9 -- missing cx lookup --
|2 Crossref
|u Messina, F., Bräm, O., Cannizzo, A. & Chergui, M. Real-time observation of the charge transfer to solvent dynamics. Nat. Commun. 4, 2119 (2013).
|t Nat. Commun.
|v 4
|y 2013
999 C 5 |a 10.1126/science.1246291
|9 -- missing cx lookup --
|1 MH Elkins
|p 1496 -
|2 Crossref
|u Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013).
|t Science
|v 342
|y 2013
999 C 5 |a 10.1021/acs.jpclett.9b01750
|9 -- missing cx lookup --
|1 S Karashima
|p 4499 -
|2 Crossref
|u Karashima, S., Yamamoto, Y.-i & Suzuki, T. Ultrafast internal conversion and solvation of electrons in water, methanol, and ethanol. J. Phys. Chem. Lett. 10, 4499–4504 (2019).
|t J. Phys. Chem. Lett.
|v 10
|y 2019
999 C 5 |a 10.1021/acs.jpclett.2c03460
|9 -- missing cx lookup --
|1 K Carter-Fenk
|p 870 -
|2 Crossref
|u Carter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett. 14, 870–878 (2023).
|t J. Phys. Chem. Lett.
|v 14
|y 2023
999 C 5 |a 10.1038/s41467-024-46772-0
|1 J Lan
|9 -- missing cx lookup --
|2 Crossref
|u Lan, J., Chergui, M. & Pasquarello, A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat. Commun. 15, 2544 (2024).
|t Nat. Commun.
|v 15
|y 2024
999 C 5 |a 10.1038/nchem.580
|9 -- missing cx lookup --
|1 KR Siefermann
|p 274 -
|2 Crossref
|u Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010).
|t Nat. Chem.
|v 2
|y 2010
999 C 5 |a 10.1021/acs.chemrev.6b00453
|9 -- missing cx lookup --
|1 M Nisoli
|p 10760 -
|2 Crossref
|u Nisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017).
|t Chem. Rev.
|v 117
|y 2017
999 C 5 |a 10.1021/acs.jpclett.1c02016
|9 -- missing cx lookup --
|1 ICD Merritt
|p 8404 -
|2 Crossref
|u Merritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett. 12, 8404–8415 (2021).
|t J. Phys. Chem. Lett.
|v 12
|y 2021
999 C 5 |a 10.1038/s42004-023-00989-0
|9 -- missing cx lookup --
|1 F Calegari
|p 184 -
|2 Crossref
|u Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem. 6, 184 (2023).
|t Commun. Chem.
|v 6
|y 2023
999 C 5 |a 10.1088/1361-6633/ac5e7f
|9 -- missing cx lookup --
|1 R Borrego-Varillas
|p 066401 -
|2 Crossref
|u Borrego-Varillas, R., Lucchini, M. & Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys. 85, 066401 (2022).
|t Rep. Prog. Phys.
|v 85
|y 2022
999 C 5 |a 10.1126/science.abj2096
|9 -- missing cx lookup --
|1 S Li
|p 285 -
|2 Crossref
|u Li, S. et al. Attosecond coherent electron motion in Auger–Meitner decay. Science 375, 285–290 (2022).
|t Science
|v 375
|y 2022
999 C 5 |a 10.1126/science.adn6059
|9 -- missing cx lookup --
|1 S Li
|p 1118 -
|2 Crossref
|u Li, S. et al. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024).
|t Science
|v 383
|y 2024
999 C 5 |a 10.1126/sciadv.aat3962
|9 -- missing cx lookup --
|1 RY Bello
|p eaat3962 -
|2 Crossref
|u Bello, R. Y. et al. Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. Sci. Adv. 4, eaat3962 (2018).
|t Sci. Adv.
|v 4
|y 2018
999 C 5 |a 10.1126/science.abb9318
|9 -- missing cx lookup --
|1 S Grundmann
|p 339 -
|2 Crossref
|u Grundmann, S. et al. Zeptosecond birth time delay in molecular photoionization. Science 370, 339–341 (2020).
|t Science
|v 370
|y 2020
999 C 5 |a 10.1038/s41467-021-26994-2
|1 J Rist
|9 -- missing cx lookup --
|2 Crossref
|u Rist, J. et al. Measuring the photoelectron emission delay in the molecular frame. Nat. Commun. 12, 6657 (2021).
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |a 10.1038/s41467-021-27360-y
|1 F Holzmeier
|9 -- missing cx lookup --
|2 Crossref
|u Holzmeier, F. et al. Influence of shape resonances on the angular dependence of molecular photoionization delays. Nat. Commun. 12, 7343 (2021).
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |a 10.1103/PhysRevLett.68.1892
|9 -- missing cx lookup --
|1 O Björneholm
|p 1892 -
|2 Crossref
|u Björneholm, O., Nilsson, A., Sandell, A., Hernnäs, B. & Mårtensson, N. Determination of time scales for charge-transfer screening in physisorbed molecules. Phys. Rev. Lett. 68, 1892 (1992).
|t Phys. Rev. Lett.
|v 68
|y 1992
999 C 5 |a 10.1016/S0301-0104(99)00305-5
|9 -- missing cx lookup --
|1 W Wurth
|p 141 -
|2 Crossref
|u Wurth, W. & Menzel, D. Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy. Chem. Phys. 251, 141–149 (2000).
|t Chem. Phys.
|v 251
|y 2000
999 C 5 |a 10.1103/RevModPhys.74.703
|9 -- missing cx lookup --
|1 PA Brühwiler
|p 703 -
|2 Crossref
|u Brühwiler, P. A., Karis, O. & Mårtensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703 (2002).
|t Rev. Mod. Phys.
|v 74
|y 2002
999 C 5 |a 10.1038/nature03833
|9 -- missing cx lookup --
|1 A Föhlisch
|p 373 -
|2 Crossref
|u Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).
|t Nature
|v 436
|y 2005
999 C 5 |a 10.1016/0368-2048(94)02292-5
|9 -- missing cx lookup --
|1 H Aksela
|p 235 -
|2 Crossref
|u Aksela, H. Resonant Auger spectroscopy of atoms and molecules. J. Electron Spectrosc. Relat. Phenom 72, 235–242 (1995).
|t J. Electron Spectrosc. Relat. Phenom
|v 72
|y 1995
999 C 5 |a 10.1103/PhysRevA.107.032802
|9 -- missing cx lookup --
|1 FOL Johansson
|p 032802 -
|2 Crossref
|u Johansson, F. O. L. et al. Resonant Auger spectroscopy on solid xenon on gold, silver, and copper substrates. Phys. Rev. A 107, 032802 (2023).
|t Phys. Rev. A
|v 107
|y 2023
999 C 5 |a 10.1103/PhysRevA.58.1988
|9 -- missing cx lookup --
|1 RF Fink
|p 1988 -
|2 Crossref
|u Fink, R. F., Kivilompolo, M., Aksela, H. & Aksela, S. Spin–orbit interaction and molecular-field effects in the L2,3VV Auger-electron spectra of HCl. Phys. Rev. A 58, 1988 (1998).
|t Phys. Rev. A
|v 58
|y 1998
999 C 5 |a 10.1021/ja8009742
|9 -- missing cx lookup --
|1 B Winter
|p 7130 -
|2 Crossref
|u Winter, B. et al. Electron dynamics in charge-transfer-to-solvent states of aqueous chloride revealed by Cl− 2p resonant auger-electron spectroscopy. J. Am. Chem. Soc. 130, 7130–7138 (2008).
|t J. Am. Chem. Soc.
|v 130
|y 2008
999 C 5 |a 10.1103/PhysRevLett.99.217406
|9 -- missing cx lookup --
|1 D Nordlund
|p 217406 -
|2 Crossref
|u Nordlund, D. et al. Probing the electron delocalization in liquid water and ice at attosecond time scales. Phys. Rev. Lett. 99, 217406 (2007).
|t Phys. Rev. Lett.
|v 99
|y 2007
999 C 5 |a 10.1021/ja204100j
|9 -- missing cx lookup --
|1 N Ottosson
|p 13489 -
|2 Crossref
|u Ottosson, N. et al. Cations strongly reduce electron-hopping rates in aqueous solutions. J. Am. Chem. Soc. 133, 13489–13495 (2011).
|t J. Am. Chem. Soc.
|v 133
|y 2011
999 C 5 |a 10.1021/acs.chemrev.0c00106
|9 -- missing cx lookup --
|1 T Jahnke
|p 11295 -
|2 Crossref
|u Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020).
|t Chem. Rev.
|v 120
|y 2020
999 C 5 |a 10.1021/jp108956v
|9 -- missing cx lookup --
|1 G Öhrwall
|p 17057 -
|2 Crossref
|u Öhrwall, G. et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057–17061 (2010).
|t J. Phys. Chem. B
|v 114
|y 2010
999 C 5 |a 10.1021/ja203430s
|9 -- missing cx lookup --
|1 W Pokapanich
|p 13430 -
|2 Crossref
|u Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole-clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).
|t J. Am. Chem. Soc.
|v 133
|y 2011
999 C 5 |a 10.1039/D2CP00227B
|9 -- missing cx lookup --
|1 G Gopakumar
|p 8661 -
|2 Crossref
|u Gopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022).
|t Phys. Chem. Chem. Phys.
|v 24
|y 2022
999 C 5 |a 10.1021/acs.jpclett.8b01783
|9 -- missing cx lookup --
|1 T Miteva
|p 4457 -
|2 Crossref
|u Miteva, T. et al. The all-seeing eye of resonant Auger electron spectroscopy: a study on aqueous solution using tender X-rays. J. Phys. Chem. Lett. 9, 4457–4462 (2018).
|t J. Phys. Chem. Lett.
|v 9
|y 2018
999 C 5 |a 10.1038/s41598-017-00756-x
|1 D Hollas
|9 -- missing cx lookup --
|2 Crossref
|u Hollas, D. et al. Aqueous solution chemistry of ammonium cation in the Auger time window. Sci. Rep. 7, 756 (2017).
|t Sci. Rep.
|v 7
|y 2017
999 C 5 |a 10.1006/adnd.2000.0848
|9 -- missing cx lookup --
|1 JL Campbell
|p 1 -
|2 Crossref
|u Campbell, J. L. & Papp, T. Widths of the atomic K-N7 levels. At. Data Nucl. Data Tables 77, 1–56 (2001).
|t At. Data Nucl. Data Tables
|v 77
|y 2001
999 C 5 |a 10.1103/PhysRevB.76.235406
|9 -- missing cx lookup --
|1 D Sánchez-Portal
|p 235406 -
|2 Crossref
|u Sánchez-Portal, D., Menzel, D. & Echenique, P. M. First-principles calculation of charge transfer at surfaces: the case of core-excited $${{{{\rm{Ar}}}}}^{*}(2{{p}}_{3/2}^{-1}4s)$$ on Ru(0001). Phys. Rev. B 76, 235406 (2007).
|t Phys. Rev. B
|v 76
|y 2007
999 C 5 |1 RG Forbes
|y 2011
|2 Crossref
|u Forbes, R. G. & Deane, J. H. B. Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. Math. Phys. Eng. Sci. 467, 2927–2947 (2011).
999 C 5 |a 10.1063/1.1979487
|9 -- missing cx lookup --
|1 P Cabral do Couto
|p 054510 -
|2 Crossref
|u Cabral do Couto, P., Estácio, S. G. & Costa Cabral, B. J. The Kohn–Sham density of states and band gap of water: from small clusters to liquid water. J. Chem. Phys. 123, 054510 (2005).
|t J. Chem. Phys.
|v 123
|y 2005
999 C 5 |a 10.1063/1.1940612
|9 -- missing cx lookup --
|1 D Prendergast
|p 014501 -
|2 Crossref
|u Prendergast, D., Grossman, J. C. & Galli, G. The electronic structure of liquid water within density-functional theory. J. Chem. Phys. 123, 014501 (2005).
|t J. Chem. Phys.
|v 123
|y 2005
999 C 5 |a 10.1039/C4CP04202F
|9 -- missing cx lookup --
|1 C Fang
|p 365 -
|2 Crossref
|u Fang, C. et al. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations. Phys. Chem. Chem. Phys. 17, 365–375 (2015).
|t Phys. Chem. Chem. Phys.
|v 17
|y 2015
999 C 5 |a 10.1103/PhysRevResearch.3.023182
|9 -- missing cx lookup --
|1 T Bischoff
|p 023182 -
|2 Crossref
|u Bischoff, T., Reshetnyak, I. & Pasquarello, A. Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. Phys. Rev. Res. 3, 023182 (2021).
|t Phys. Rev. Res.
|v 3
|y 2021
999 C 5 |a 10.1021/acs.chemrev.5b00672
|9 -- missing cx lookup --
|1 T Fransson
|p 7551 -
|2 Crossref
|u Fransson, T. et al. X-ray and electron spectroscopy of water. Chem. Rev. 116, 7551–7569 (2016).
|t Chem. Rev.
|v 116
|y 2016
999 C 5 |a 10.1126/sciadv.aba7762
|9 -- missing cx lookup --
|1 S Nandi
|p eaba7762 -
|2 Crossref
|u Nandi, S. et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 6, eaba7762 (2020).
|t Sci. Adv.
|v 6
|y 2020
999 C 5 |a 10.1126/science.aah6972
|9 -- missing cx lookup --
|1 A Kaldun
|p 738 -
|2 Crossref
|u Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016).
|t Science
|v 354
|y 2016
999 C 5 |a 10.1126/science.aah5188
|9 -- missing cx lookup --
|1 V Gruson
|p 734 -
|2 Crossref
|u Gruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016).
|t Science
|v 354
|y 2016
999 C 5 |a 10.1016/j.nima.2012.10.110
|9 -- missing cx lookup --
|1 J Viefhaus
|p 151 -
|2 Crossref
|u Viefhaus, J. et al. The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. Sect. A 710, 151–154 (2013).
|t Nucl. Instrum. Methods Phys. Res. Sect. A
|v 710
|y 2013
999 C 5 |a 10.1063/5.0072346
|9 -- missing cx lookup --
|1 S Malerz
|p 015101 -
|2 Crossref
|u Malerz, S. et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 93, 015101 (2022).
|t Rev. Sci. Instrum.
|v 93
|y 2022
999 C 5 |a 10.1107/S160057752100103X
|9 -- missing cx lookup --
|1 S Zhu
|p 624 -
|2 Crossref
|u Zhu, S. et al. HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory. J. Synchrotron Radiat. 28, 624–636 (2021).
|t J. Synchrotron Radiat.
|v 28
|y 2021
999 C 5 |a 10.1021/acs.jpcb.5b03337
|9 -- missing cx lookup --
|1 R Seidel
|p 10607 -
|2 Crossref
|u Seidel, R., Atak, K., Thürmer, S., Aziz, E. F. & Winter, B. Ti3+ aqueous solution: hybridization and electronic relaxation probed by state-dependent electron spectroscopy. J. Phys. Chem. B 119, 10607–10615 (2015).
|t J. Phys. Chem. B
|v 119
|y 2015
999 C 5 |a 10.1021/jp302958j
|9 -- missing cx lookup --
|1 M Blum
|p 13757 -
|2 Crossref
|u Blum, M. et al. Ultrafast proton dynamics in aqueous amino acid solutions studied by resonant inelastic soft x-ray scattering. J. Phys. Chem. B 116, 13757–13764 (2012).
|t J. Phys. Chem. B
|v 116
|y 2012
999 C 5 |2 Crossref
|u Kukk, E. SPANCF—Spectrum Analysis by Curve Fitting—Macro Package for Igor Pro https://www.geocities.ws/ekukk/intro.htm#:~:text=In%20this%20approach%2C%20called%20%22curve,to%20the%20spectrum%20is%20obtained (2012).
999 C 5 |a 10.1038/s41557-023-01302-1
|9 -- missing cx lookup --
|1 G Gopakumar
|p 1408 -
|2 Crossref
|u Gopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem. 15, 1408–1414 (2023).
|t Nat. Chem.
|v 15
|y 2023
999 C 5 |a 10.1039/b912718f
|9 -- missing cx lookup --
|1 NA Besley
|p 10350 -
|2 Crossref
|u Besley, N. A., Peach, M. J. G. & Tozer, D. J. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys. 11, 10350–10358 (2009).
|t Phys. Chem. Chem. Phys.
|v 11
|y 2009
999 C 5 |a 10.1021/acs.jctc.3c00673
|9 -- missing cx lookup --
|1 JM Herbert
|p 6745 -
|2 Crossref
|u Herbert, J. M., Zhu, Y., Alam, B. & Ojha, A. K. Time-dependent density functional theory for x-ray absorption spectra: comparing the real-time approach to linear response. J. Chem. Theory Comput. 19, 6745–6760 (2023).
|t J. Chem. Theory Comput.
|v 19
|y 2023
999 C 5 |a 10.1063/1.1520138
|9 -- missing cx lookup --
|1 KA Peterson
|p 10548 -
|2 Crossref
|u Peterson, K. A. & Dunning, Jr, T. H. Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys. 117, 10548–10560 (2002).
|t J. Chem. Phys.
|v 117
|y 2002
999 C 5 |a 10.1063/5.0055522
|9 -- missing cx lookup --
|1 E Epifanovsky
|p 084801 -
|2 Crossref
|u Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys. 155, 084801 (2021).
|t J. Chem. Phys.
|v 155
|y 2021
999 C 5 |a 10.1103/PhysRevA.90.052521
|9 -- missing cx lookup --
|1 SA Bäppler
|p 052521 -
|2 Crossref
|u Bäppler, S. A., Plasser, F., Wormit, M. & Dreuw, A. Exciton analysis of many-body wave functions: bridging the gap between the quasiparticle and molecular orbital pictures. Phys. Rev. A 90, 052521 (2014).
|t Phys. Rev. A
|v 90
|y 2014
999 C 5 |a 10.1002/jcc.23975
|9 -- missing cx lookup --
|1 F Plasser
|p 1609 -
|2 Crossref
|u Plasser, F. et al. Statistical analysis of electronic excitation processes: spatial location, compactness, charge transfer, and electron–hole correlation. J. Comp. Chem. 36, 1609–1620 (2015).
|t J. Comp. Chem.
|v 36
|y 2015
999 C 5 |a 10.1039/C5CP07077E
|9 -- missing cx lookup --
|1 SA Mewes
|p 2548 -
|2 Crossref
|u Mewes, S. A., Mewes, J.-M., Dreuw, A. & Plasser, F. Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations. Phys. Chem. Chem. Phys. 18, 2548–2563 (2016).
|t Phys. Chem. Chem. Phys.
|v 18
|y 2016
999 C 5 |a 10.1063/1.5143076
|9 -- missing cx lookup --
|1 F Plasser
|p 084108 -
|2 Crossref
|u Plasser, F. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 152, 084108 (2020).
|t J. Chem. Phys.
|v 152
|y 2020
999 C 5 |a 10.1021/jp801738f
|9 -- missing cx lookup --
|1 ATB Gilbert
|p 13164 -
|2 Crossref
|u Gilbert, A. T. B., Besley, N. A. & Gill, P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A 112, 13164–13171 (2008).
|t J. Phys. Chem. A
|v 112
|y 2008
999 C 5 |a 10.1063/5.0134459
|9 -- missing cx lookup --
|1 S Jana
|p 094111 -
|2 Crossref
|u Jana, S. & Herbert, J. M. Slater transition methods for core-level electron binding energies. J. Chem. Phys. 158, 094111 (2023).
|t J. Chem. Phys.
|v 158
|y 2023


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21