000616885 001__ 616885
000616885 005__ 20250723172625.0
000616885 0247_ $$2doi$$a10.1038/s41467-024-52740-5
000616885 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06566
000616885 0247_ $$2altmetric$$aaltmetric:169348956
000616885 0247_ $$2pmid$$apmid:39406706
000616885 0247_ $$2WOS$$aWOS:001337260300003
000616885 0247_ $$2openalex$$aopenalex:W4403412567
000616885 037__ $$aPUBDB-2024-06566
000616885 041__ $$aEnglish
000616885 082__ $$a500
000616885 1001_ $$0P:(DE-H253)PIP1104167$$aMuchova, Eva$$b0$$eCorresponding author
000616885 245__ $$aAttosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique
000616885 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000616885 3367_ $$2DRIVER$$aarticle
000616885 3367_ $$2DataCite$$aOutput Types/Journal article
000616885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730902051_540641
000616885 3367_ $$2BibTeX$$aARTICLE
000616885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000616885 3367_ $$00$$2EndNote$$aJournal Article
000616885 500__ $$aOpen Access
000616885 520__ $$aCharge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger–Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.
000616885 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000616885 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000616885 536__ $$0G:(DE-H253)I-20190339$$aFS-Proposal: I-20190339 (I-20190339)$$cI-20190339$$x2
000616885 536__ $$0G:(EU-Grant)883759$$aAQUACHIRAL - Chiral aqueous-phase chemistry (883759)$$c883759$$fERC-2019-ADG$$x3
000616885 536__ $$0G:(GEPRIS)509471550$$aDFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)$$c509471550$$x4
000616885 542__ $$2Crossref$$i2024-10-16$$uhttps://creativecommons.org/licenses/by/4.0
000616885 542__ $$2Crossref$$i2024-10-16$$uhttps://creativecommons.org/licenses/by/4.0
000616885 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000616885 693__ $$0EXP:(DE-H253)P-P04-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P04-20150101$$aPETRA III$$fPETRA Beamline P04$$x0
000616885 7001_ $$0P:(DE-H253)PIP1083691$$aGopakumar, Geethanjali$$b1
000616885 7001_ $$0P:(DE-H253)PIP1083693$$aUnger, Isaak$$b2
000616885 7001_ $$0P:(DE-H253)PIP1025903$$aOehrwall, Gunnar$$b3
000616885 7001_ $$0P:(DE-H253)PIP1090413$$aCeolin, Denis$$b4
000616885 7001_ $$0P:(DE-H253)PIP1017364$$aTrinter, Florian$$b5
000616885 7001_ $$0P:(DE-H253)PIP1086922$$aWilkinson, Iain$$b6
000616885 7001_ $$0P:(DE-HGF)0$$aChatzigeorgiou, E.$$b7
000616885 7001_ $$0P:(DE-H253)PIP1102083$$aSlavicek, Petr$$b8
000616885 7001_ $$0P:(DE-H253)PIP1008114$$aHergenhahn, Uwe$$b9
000616885 7001_ $$0P:(DE-H253)PIP1023483$$aWinter, Bernd$$b10
000616885 7001_ $$0P:(DE-H253)PIP1011740$$aCaleman, Carl$$b11
000616885 7001_ $$0P:(DE-H253)PIP1083875$$aBjoerneholm, Olle$$b12$$eCorresponding author
000616885 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-52740-5$$bSpringer Science and Business Media LLC$$d2024-10-16$$n1$$p8903$$tNature Communications$$v15$$x2041-1723$$y2024
000616885 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-52740-5$$gVol. 15, no. 1, p. 8903$$n1$$p8903$$tNature Communications$$v15$$x2041-1723$$y2024
000616885 8564_ $$uhttps://www.nature.com/articles/s41467-024-52740-5
000616885 8564_ $$uhttps://bib-pubdb1.desy.de/record/616885/files/Muchova_NatCommun_2024.pdf$$yOpenAccess
000616885 8564_ $$uhttps://bib-pubdb1.desy.de/record/616885/files/Muchova_NatCommun_2024.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000616885 909CO $$ooai:bib-pubdb1.desy.de:616885$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104167$$aExternal Institute$$b0$$kExtern
000616885 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1104167$$aEuropean XFEL$$b0$$kXFEL.EU
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083691$$aExternal Institute$$b1$$kExtern
000616885 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1083691$$aEuropean XFEL$$b1$$kXFEL.EU
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083693$$aExternal Institute$$b2$$kExtern
000616885 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1083693$$aEuropean XFEL$$b2$$kXFEL.EU
000616885 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083693$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025903$$aExternal Institute$$b3$$kExtern
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090413$$aExternal Institute$$b4$$kExtern
000616885 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1017364$$aEuropean XFEL$$b5$$kXFEL.EU
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017364$$aExternal Institute$$b5$$kExtern
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086922$$aExternal Institute$$b6$$kExtern
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102083$$aExternal Institute$$b8$$kExtern
000616885 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1102083$$aEuropean XFEL$$b8$$kXFEL.EU
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008114$$aExternal Institute$$b9$$kExtern
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023483$$aExternal Institute$$b10$$kExtern
000616885 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011740$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000616885 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1011740$$aCentre for Free-Electron Laser Science$$b11$$kCFEL
000616885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083875$$aExternal Institute$$b12$$kExtern
000616885 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1083875$$aEuropean XFEL$$b12$$kXFEL.EU
000616885 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000616885 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000616885 9141_ $$y2024
000616885 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000616885 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000616885 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000616885 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000616885 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000616885 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000616885 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000616885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000616885 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000616885 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000616885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000616885 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000616885 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000616885 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000616885 980__ $$ajournal
000616885 980__ $$aVDB
000616885 980__ $$aUNRESTRICTED
000616885 980__ $$aI:(DE-H253)HAS-User-20120731
000616885 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000616885 9801_ $$aFullTexts
000616885 999C5 $$1BC Garrett$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr030453x$$p355 -$$tChem. Rev.$$uGarrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355–390 (2005).$$v105$$y2005
000616885 999C5 $$1E Rabinowitch$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.14.112$$p112 -$$tRev. Mod. Phys.$$uRabinowitch, E. Electron transfer spectra and their photochemical effects. Rev. Mod. Phys. 14, 112 (1942).$$v14$$y1942
000616885 999C5 $$1MJ Blandamer$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr60263a002$$p59 -$$tChem. Rev.$$uBlandamer, M. J. & Fox, M. F. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev. 70, 59–93 (1970).$$v70$$y1970
000616885 999C5 $$1X Chen$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.physchem.58.032806.104702$$p203 -$$tAnnu. Rev. Phys. Chem.$$uChen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59, 203–231 (2008).$$v59$$y2008
000616885 999C5 $$1A Lübcke$$2Crossref$$9-- missing cx lookup --$$a10.1039/c0cp00847h$$p14629 -$$tPhys. Chem. Chem. Phys.$$uLübcke, A., Buchner, F., Heine, N., Hertel, I. V. & Schultz, T. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12, 14629–14634 (2010).$$v12$$y2010
000616885 999C5 $$1Y-I Suzuki$$2Crossref$$9-- missing cx lookup --$$a10.1039/c0sc00650e$$p1094 -$$tChem. Sci.$$uSuzuki, Y.-I. et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I− to water in aqueous NaI solution. Chem. Sci. 2, 1094–1102 (2011).$$v2$$y2011
000616885 999C5 $$1F Messina$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms3119$$tNat. Commun.$$uMessina, F., Bräm, O., Cannizzo, A. & Chergui, M. Real-time observation of the charge transfer to solvent dynamics. Nat. Commun. 4, 2119 (2013).$$v4$$y2013
000616885 999C5 $$1MH Elkins$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1246291$$p1496 -$$tScience$$uElkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013).$$v342$$y2013
000616885 999C5 $$1S Karashima$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.9b01750$$p4499 -$$tJ. Phys. Chem. Lett.$$uKarashima, S., Yamamoto, Y.-i & Suzuki, T. Ultrafast internal conversion and solvation of electrons in water, methanol, and ethanol. J. Phys. Chem. Lett. 10, 4499–4504 (2019).$$v10$$y2019
000616885 999C5 $$1K Carter-Fenk$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.2c03460$$p870 -$$tJ. Phys. Chem. Lett.$$uCarter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett. 14, 870–878 (2023).$$v14$$y2023
000616885 999C5 $$1J Lan$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-024-46772-0$$tNat. Commun.$$uLan, J., Chergui, M. & Pasquarello, A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat. Commun. 15, 2544 (2024).$$v15$$y2024
000616885 999C5 $$1KR Siefermann$$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.580$$p274 -$$tNat. Chem.$$uSiefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010).$$v2$$y2010
000616885 999C5 $$1M Nisoli$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.6b00453$$p10760 -$$tChem. Rev.$$uNisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017).$$v117$$y2017
000616885 999C5 $$1ICD Merritt$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.1c02016$$p8404 -$$tJ. Phys. Chem. Lett.$$uMerritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett. 12, 8404–8415 (2021).$$v12$$y2021
000616885 999C5 $$1F Calegari$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42004-023-00989-0$$p184 -$$tCommun. Chem.$$uCalegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem. 6, 184 (2023).$$v6$$y2023
000616885 999C5 $$1R Borrego-Varillas$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6633/ac5e7f$$p066401 -$$tRep. Prog. Phys.$$uBorrego-Varillas, R., Lucchini, M. & Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys. 85, 066401 (2022).$$v85$$y2022
000616885 999C5 $$1S Li$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abj2096$$p285 -$$tScience$$uLi, S. et al. Attosecond coherent electron motion in Auger–Meitner decay. Science 375, 285–290 (2022).$$v375$$y2022
000616885 999C5 $$1S Li$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.adn6059$$p1118 -$$tScience$$uLi, S. et al. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024).$$v383$$y2024
000616885 999C5 $$1RY Bello$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aat3962$$peaat3962 -$$tSci. Adv.$$uBello, R. Y. et al. Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. Sci. Adv. 4, eaat3962 (2018).$$v4$$y2018
000616885 999C5 $$1S Grundmann$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb9318$$p339 -$$tScience$$uGrundmann, S. et al. Zeptosecond birth time delay in molecular photoionization. Science 370, 339–341 (2020).$$v370$$y2020
000616885 999C5 $$1J Rist$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-26994-2$$tNat. Commun.$$uRist, J. et al. Measuring the photoelectron emission delay in the molecular frame. Nat. Commun. 12, 6657 (2021).$$v12$$y2021
000616885 999C5 $$1F Holzmeier$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-27360-y$$tNat. Commun.$$uHolzmeier, F. et al. Influence of shape resonances on the angular dependence of molecular photoionization delays. Nat. Commun. 12, 7343 (2021).$$v12$$y2021
000616885 999C5 $$1O Björneholm$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.68.1892$$p1892 -$$tPhys. Rev. Lett.$$uBjörneholm, O., Nilsson, A., Sandell, A., Hernnäs, B. & Mårtensson, N. Determination of time scales for charge-transfer screening in physisorbed molecules. Phys. Rev. Lett. 68, 1892 (1992).$$v68$$y1992
000616885 999C5 $$1W Wurth$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0301-0104(99)00305-5$$p141 -$$tChem. Phys.$$uWurth, W. & Menzel, D. Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy. Chem. Phys. 251, 141–149 (2000).$$v251$$y2000
000616885 999C5 $$1PA Brühwiler$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.74.703$$p703 -$$tRev. Mod. Phys.$$uBrühwiler, P. A., Karis, O. & Mårtensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703 (2002).$$v74$$y2002
000616885 999C5 $$1A Föhlisch$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature03833$$p373 -$$tNature$$uFöhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).$$v436$$y2005
000616885 999C5 $$1H Aksela$$2Crossref$$9-- missing cx lookup --$$a10.1016/0368-2048(94)02292-5$$p235 -$$tJ. Electron Spectrosc. Relat. Phenom$$uAksela, H. Resonant Auger spectroscopy of atoms and molecules. J. Electron Spectrosc. Relat. Phenom 72, 235–242 (1995).$$v72$$y1995
000616885 999C5 $$1FOL Johansson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.107.032802$$p032802 -$$tPhys. Rev. A$$uJohansson, F. O. L. et al. Resonant Auger spectroscopy on solid xenon on gold, silver, and copper substrates. Phys. Rev. A 107, 032802 (2023).$$v107$$y2023
000616885 999C5 $$1RF Fink$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.58.1988$$p1988 -$$tPhys. Rev. A$$uFink, R. F., Kivilompolo, M., Aksela, H. & Aksela, S. Spin–orbit interaction and molecular-field effects in the L2,3VV Auger-electron spectra of HCl. Phys. Rev. A 58, 1988 (1998).$$v58$$y1998
000616885 999C5 $$1B Winter$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja8009742$$p7130 -$$tJ. Am. Chem. Soc.$$uWinter, B. et al. Electron dynamics in charge-transfer-to-solvent states of aqueous chloride revealed by Cl− 2p resonant auger-electron spectroscopy. J. Am. Chem. Soc. 130, 7130–7138 (2008).$$v130$$y2008
000616885 999C5 $$1D Nordlund$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.217406$$p217406 -$$tPhys. Rev. Lett.$$uNordlund, D. et al. Probing the electron delocalization in liquid water and ice at attosecond time scales. Phys. Rev. Lett. 99, 217406 (2007).$$v99$$y2007
000616885 999C5 $$1N Ottosson$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja204100j$$p13489 -$$tJ. Am. Chem. Soc.$$uOttosson, N. et al. Cations strongly reduce electron-hopping rates in aqueous solutions. J. Am. Chem. Soc. 133, 13489–13495 (2011).$$v133$$y2011
000616885 999C5 $$1T Jahnke$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.0c00106$$p11295 -$$tChem. Rev.$$uJahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020).$$v120$$y2020
000616885 999C5 $$1G Öhrwall$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp108956v$$p17057 -$$tJ. Phys. Chem. B$$uÖhrwall, G. et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057–17061 (2010).$$v114$$y2010
000616885 999C5 $$1W Pokapanich$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja203430s$$p13430 -$$tJ. Am. Chem. Soc.$$uPokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole-clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).$$v133$$y2011
000616885 999C5 $$1G Gopakumar$$2Crossref$$9-- missing cx lookup --$$a10.1039/D2CP00227B$$p8661 -$$tPhys. Chem. Chem. Phys.$$uGopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022).$$v24$$y2022
000616885 999C5 $$1T Miteva$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.8b01783$$p4457 -$$tJ. Phys. Chem. Lett.$$uMiteva, T. et al. The all-seeing eye of resonant Auger electron spectroscopy: a study on aqueous solution using tender X-rays. J. Phys. Chem. Lett. 9, 4457–4462 (2018).$$v9$$y2018
000616885 999C5 $$1D Hollas$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-017-00756-x$$tSci. Rep.$$uHollas, D. et al. Aqueous solution chemistry of ammonium cation in the Auger time window. Sci. Rep. 7, 756 (2017).$$v7$$y2017
000616885 999C5 $$1JL Campbell$$2Crossref$$9-- missing cx lookup --$$a10.1006/adnd.2000.0848$$p1 -$$tAt. Data Nucl. Data Tables$$uCampbell, J. L. & Papp, T. Widths of the atomic K-N7 levels. At. Data Nucl. Data Tables 77, 1–56 (2001).$$v77$$y2001
000616885 999C5 $$1D Sánchez-Portal$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.235406$$p235406 -$$tPhys. Rev. B$$uSánchez-Portal, D., Menzel, D. & Echenique, P. M. First-principles calculation of charge transfer at surfaces: the case of core-excited $${{{{\rm{Ar}}}}}^{*}(2{{p}}_{3/2}^{-1}4s)$$ on Ru(0001). Phys. Rev. B 76, 235406 (2007).$$v76$$y2007
000616885 999C5 $$1RG Forbes$$2Crossref$$uForbes, R. G. & Deane, J. H. B. Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. Math. Phys. Eng. Sci. 467, 2927–2947 (2011).$$y2011
000616885 999C5 $$1P Cabral do Couto$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1979487$$p054510 -$$tJ. Chem. Phys.$$uCabral do Couto, P., Estácio, S. G. & Costa Cabral, B. J. The Kohn–Sham density of states and band gap of water: from small clusters to liquid water. J. Chem. Phys. 123, 054510 (2005).$$v123$$y2005
000616885 999C5 $$1D Prendergast$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1940612$$p014501 -$$tJ. Chem. Phys.$$uPrendergast, D., Grossman, J. C. & Galli, G. The electronic structure of liquid water within density-functional theory. J. Chem. Phys. 123, 014501 (2005).$$v123$$y2005
000616885 999C5 $$1C Fang$$2Crossref$$9-- missing cx lookup --$$a10.1039/C4CP04202F$$p365 -$$tPhys. Chem. Chem. Phys.$$uFang, C. et al. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations. Phys. Chem. Chem. Phys. 17, 365–375 (2015).$$v17$$y2015
000616885 999C5 $$1T Bischoff$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.3.023182$$p023182 -$$tPhys. Rev. Res.$$uBischoff, T., Reshetnyak, I. & Pasquarello, A. Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. Phys. Rev. Res. 3, 023182 (2021).$$v3$$y2021
000616885 999C5 $$1T Fransson$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.5b00672$$p7551 -$$tChem. Rev.$$uFransson, T. et al. X-ray and electron spectroscopy of water. Chem. Rev. 116, 7551–7569 (2016).$$v116$$y2016
000616885 999C5 $$1S Nandi$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aba7762$$peaba7762 -$$tSci. Adv.$$uNandi, S. et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 6, eaba7762 (2020).$$v6$$y2020
000616885 999C5 $$1A Kaldun$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aah6972$$p738 -$$tScience$$uKaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016).$$v354$$y2016
000616885 999C5 $$1V Gruson$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aah5188$$p734 -$$tScience$$uGruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016).$$v354$$y2016
000616885 999C5 $$1J Viefhaus$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2012.10.110$$p151 -$$tNucl. Instrum. Methods Phys. Res. Sect. A$$uViefhaus, J. et al. The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. Sect. A 710, 151–154 (2013).$$v710$$y2013
000616885 999C5 $$1S Malerz$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0072346$$p015101 -$$tRev. Sci. Instrum.$$uMalerz, S. et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 93, 015101 (2022).$$v93$$y2022
000616885 999C5 $$1S Zhu$$2Crossref$$9-- missing cx lookup --$$a10.1107/S160057752100103X$$p624 -$$tJ. Synchrotron Radiat.$$uZhu, S. et al. HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory. J. Synchrotron Radiat. 28, 624–636 (2021).$$v28$$y2021
000616885 999C5 $$1R Seidel$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcb.5b03337$$p10607 -$$tJ. Phys. Chem. B$$uSeidel, R., Atak, K., Thürmer, S., Aziz, E. F. & Winter, B. Ti3+ aqueous solution: hybridization and electronic relaxation probed by state-dependent electron spectroscopy. J. Phys. Chem. B 119, 10607–10615 (2015).$$v119$$y2015
000616885 999C5 $$1M Blum$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp302958j$$p13757 -$$tJ. Phys. Chem. B$$uBlum, M. et al. Ultrafast proton dynamics in aqueous amino acid solutions studied by resonant inelastic soft x-ray scattering. J. Phys. Chem. B 116, 13757–13764 (2012).$$v116$$y2012
000616885 999C5 $$2Crossref$$uKukk, E. SPANCF—Spectrum Analysis by Curve Fitting—Macro Package for Igor Pro https://www.geocities.ws/ekukk/intro.htm#:~:text=In%20this%20approach%2C%20called%20%22curve,to%20the%20spectrum%20is%20obtained (2012).
000616885 999C5 $$1G Gopakumar$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41557-023-01302-1$$p1408 -$$tNat. Chem.$$uGopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem. 15, 1408–1414 (2023).$$v15$$y2023
000616885 999C5 $$1NA Besley$$2Crossref$$9-- missing cx lookup --$$a10.1039/b912718f$$p10350 -$$tPhys. Chem. Chem. Phys.$$uBesley, N. A., Peach, M. J. G. & Tozer, D. J. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys. 11, 10350–10358 (2009).$$v11$$y2009
000616885 999C5 $$1JM Herbert$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.3c00673$$p6745 -$$tJ. Chem. Theory Comput.$$uHerbert, J. M., Zhu, Y., Alam, B. & Ojha, A. K. Time-dependent density functional theory for x-ray absorption spectra: comparing the real-time approach to linear response. J. Chem. Theory Comput. 19, 6745–6760 (2023).$$v19$$y2023
000616885 999C5 $$1KA Peterson$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1520138$$p10548 -$$tJ. Chem. Phys.$$uPeterson, K. A. & Dunning, Jr, T. H. Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys. 117, 10548–10560 (2002).$$v117$$y2002
000616885 999C5 $$1E Epifanovsky$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0055522$$p084801 -$$tJ. Chem. Phys.$$uEpifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys. 155, 084801 (2021).$$v155$$y2021
000616885 999C5 $$1SA Bäppler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.90.052521$$p052521 -$$tPhys. Rev. A$$uBäppler, S. A., Plasser, F., Wormit, M. & Dreuw, A. Exciton analysis of many-body wave functions: bridging the gap between the quasiparticle and molecular orbital pictures. Phys. Rev. A 90, 052521 (2014).$$v90$$y2014
000616885 999C5 $$1F Plasser$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.23975$$p1609 -$$tJ. Comp. Chem.$$uPlasser, F. et al. Statistical analysis of electronic excitation processes: spatial location, compactness, charge transfer, and electron–hole correlation. J. Comp. Chem. 36, 1609–1620 (2015).$$v36$$y2015
000616885 999C5 $$1SA Mewes$$2Crossref$$9-- missing cx lookup --$$a10.1039/C5CP07077E$$p2548 -$$tPhys. Chem. Chem. Phys.$$uMewes, S. A., Mewes, J.-M., Dreuw, A. & Plasser, F. Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations. Phys. Chem. Chem. Phys. 18, 2548–2563 (2016).$$v18$$y2016
000616885 999C5 $$1F Plasser$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5143076$$p084108 -$$tJ. Chem. Phys.$$uPlasser, F. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 152, 084108 (2020).$$v152$$y2020
000616885 999C5 $$1ATB Gilbert$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp801738f$$p13164 -$$tJ. Phys. Chem. A$$uGilbert, A. T. B., Besley, N. A. & Gill, P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A 112, 13164–13171 (2008).$$v112$$y2008
000616885 999C5 $$1S Jana$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0134459$$p094111 -$$tJ. Chem. Phys.$$uJana, S. & Herbert, J. M. Slater transition methods for core-level electron binding energies. J. Chem. Phys. 158, 094111 (2023).$$v158$$y2023