000616776 001__ 616776
000616776 005__ 20250723172626.0
000616776 0247_ $$2doi$$a10.1016/j.ejmp.2024.103905
000616776 0247_ $$2ISSN$$a1120-1797
000616776 0247_ $$2ISSN$$a1724-191X
000616776 0247_ $$2openalex$$aopenalex:W4402217206
000616776 037__ $$aPUBDB-2024-06530
000616776 041__ $$aEnglish
000616776 082__ $$a610
000616776 1001_ $$0P:(DE-H253)PIP1020058$$aRiemer, Felix$$b0$$eCorresponding author$$udesy
000616776 1112_ $$aEuropean Congress of Medical Physics$$cMunich$$d2024-09-11 - 2024-09-14$$gECMP 2024$$wGermany
000616776 245__ $$aPP13.11 CHARGE COLLECTION EFFICIENCY MEASUREMENTS OF A PPC05 IONIZATION CHAMBER AT ULTRA-HIGH DOSE RATE UP TO 64 GY/PULSE
000616776 260__ $$c2024
000616776 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1736267897_1957131
000616776 3367_ $$033$$2EndNote$$aConference Paper
000616776 3367_ $$2BibTeX$$aINPROCEEDINGS
000616776 3367_ $$2DRIVER$$aconferenceObject
000616776 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000616776 3367_ $$2ORCID$$aOTHER
000616776 520__ $$aIntroduction: FLASHlab@PITZ is a new R&D facility for radiationbiology studies (≤22 Mev, electrons) and is being setup at the PhotoInjector Test facility at DESY in Zeuthen (PITZ). It provides worldwideunique beam parameters regarding delivered dose and dose rate [1].With an average dose rate within one pulse of up to 109 Gy/s and peakdose rates up to 4 × 1013 Gy/s, PITZ is fully capable of ultra-high doserate experiments, for example the investigation of the FLASH effect.Furthermore, clinical dose rates of 0.05 Gy/s are also available at PITZ.Materials & Methods: Dosimetry at such high dose rates is a majorchallenge. Traditional detectors suffer from saturation and cannotprovide reliable measurements up to such high dose rates. Thecommercially available ionization chamber PPC05 (Markus type, IBADosimetry) was tested for online dosimetry. The dose per pulse can bemodified by adjusting the number of micropulses within a pulse.Results: By increasing the number of micropulses within a single pulseup to 400, a maximum dose per pulse of 64 Gy was delivered. Chargecollection efficiency from 0.16 Gy/pulse up to 64 Gy/pulse wasmeasured for four different bias voltages from 100 V up to 400 V (seefigure 1).Summary: The PITZ accelerator provides a worldwide uniqueparameter space for radiation biology studies. The number ofmicropulses within a pulse is tuneable. The ionization chamberPPC05 was irradiated with up to 64 Gy/pulse and the charge collectionefficiency was measured
000616776 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000616776 542__ $$2Crossref$$i2024-09-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000616776 542__ $$2Crossref$$i2024-09-01$$uhttps://www.elsevier.com/legal/tdmrep-license
000616776 588__ $$aDataset connected to DataCite
000616776 693__ $$0EXP:(DE-H253)PITZ-20150101$$5EXP:(DE-H253)PITZ-20150101$$ePhoto Injector Test Facility$$x0
000616776 7001_ $$0P:(DE-H253)PIP1086967$$aAftab, N.$$b1$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1080710$$aAmirkhanyan, Z.$$b2$$udesy
000616776 7001_ $$0P:(DE-HGF)0$$aBoompornprasert, P.$$b3
000616776 7001_ $$0P:(DE-H253)PIP1103583$$aDmytriiev, D.$$b4$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1103334$$aGrebinyk, A.$$b5$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1013620$$aGroß, M.$$b6$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1088516$$aHoffmann, Andreas$$b7$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1004128$$aKrasilnikov, M.$$b8$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1081485$$aLi, Xiangkun$$b9$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1111215$$aMüller, Fabian Simon$$b10
000616776 7001_ $$0P:(DE-H253)PIP1011785$$aOppelt, A.$$b11$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1098846$$aRichard, C.$$b12$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1004143$$aStephan, F.$$b13$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1007520$$aVashchenko, Grygorii$$b14$$udesy
000616776 7001_ $$0P:(DE-H253)PIP1105882$$aVillani, D.$$b15
000616776 7001_ $$0P:(DE-H253)PIP1089976$$aWorm, S.$$b16$$udesy
000616776 77318 $$2Crossref$$3journal-article$$a10.1016/j.ejmp.2024.103905$$bElsevier BV$$d2024-09-01$$p103905$$tPhysica Medica$$v125$$x1120-1797$$y2024
000616776 773__ $$0PERI:(DE-600)2110535-2$$a10.1016/j.ejmp.2024.103905$$gVol. 125, p. 103905 -$$p103905$$tPhysica medica$$v125$$x1120-1797$$y2024
000616776 8564_ $$uhttps://bib-pubdb1.desy.de/record/616776/files/1-s2.0-S1120179724007312-main.pdf$$yRestricted
000616776 8564_ $$uhttps://bib-pubdb1.desy.de/record/616776/files/1-s2.0-S1120179724007312-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000616776 909CO $$ooai:bib-pubdb1.desy.de:616776$$pVDB
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020058$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086967$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080710$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000616776 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080710$$aExternal Institute$$b2$$kExtern
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103583$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103334$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013620$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1088516$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000616776 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1088516$$aEuropean XFEL$$b7$$kXFEL.EU
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1004128$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1081485$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000616776 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1111215$$aExternal Institute$$b10$$kExtern
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011785$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098846$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1004143$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007520$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY
000616776 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105882$$aExternal Institute$$b15$$kExtern
000616776 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1089976$$aDeutsches Elektronen-Synchrotron$$b16$$kDESY
000616776 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000616776 9141_ $$y2024
000616776 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000616776 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000616776 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000616776 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MEDICA : 2022$$d2025-01-02
000616776 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000616776 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000616776 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000616776 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000616776 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000616776 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
000616776 9201_ $$0I:(DE-H253)Z_PITZ-20210408$$kZ_PITZ$$lTechnologie$$x0
000616776 9201_ $$0I:(DE-H253)Z_DET-20201126$$kZ_DET$$lZ_DET$$x1
000616776 980__ $$aabstract
000616776 980__ $$aVDB
000616776 980__ $$aI:(DE-H253)Z_PITZ-20210408
000616776 980__ $$aI:(DE-H253)Z_DET-20201126
000616776 980__ $$aUNRESTRICTED