000616619 001__ 616619
000616619 005__ 20250723172623.0
000616619 0247_ $$2doi$$a10.1016/j.addma.2024.104267
000616619 0247_ $$2ISSN$$a2214-7810
000616619 0247_ $$2ISSN$$a2214-8604
000616619 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06489
000616619 0247_ $$2WOS$$aWOS:001290882200001
000616619 0247_ $$2openalex$$aopenalex:W4399721559
000616619 037__ $$aPUBDB-2024-06489
000616619 041__ $$aEnglish
000616619 1001_ $$0P:(DE-H253)PIP1103191$$aNarayana Samy, Venkatesh Pandian$$b0$$eCorresponding author
000616619 245__ $$aThe influence of microstructural heterogeneities on high-temperature mechanical properties of additively manufactured γ'-forming Ni-based alloys
000616619 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024
000616619 3367_ $$2DRIVER$$aarticle
000616619 3367_ $$2DataCite$$aOutput Types/Journal article
000616619 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1731485743_1998683
000616619 3367_ $$2BibTeX$$aARTICLE
000616619 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000616619 3367_ $$00$$2EndNote$$aJournal Article
000616619 520__ $$aAdditive manufacturing (AM) of metallic materials yields distinctive hierarchical and heterogeneous microstructures owing to the complex thermal conditions during the build-up process. Consequently, the knowledge gained from creep properties of conventionally manufactured (CM) Ni-based alloys cannot be directly applied to AM-processed alloys. Furthermore, insufficient creep life has posed a significant challenge in the development of Ni-based superalloys fabricated by laser powder bed fusion (LPBF), one of the most important AM techniques. Nevertheless, limited research has been conducted to understand their creep behavior due to the time-consuming nature of creep testing and extended research cycles. This study delves into investigating the creep behavior of an additively manufactured, precipitation-strengthened Ni-based alloy (NiCrAl) in comparison to its CM counterpart, focusing on the structure-property relationships. Constant-load creep tests were conducted at temperatures of 750 °C and 950 °C up to a maximum duration of nearly 1500 h. Although both the AM and CM states demonstrated high creep activation energy and creep exponents, indicative of a dislocation climb mechanism, the AM state demonstrated inferior creep life and ductility compared to the CM state for creep times below 500 h. To gain deeper insights into the underlying mechanisms, multi-scale microstructural characterization was performed to understand the effect of the AM-inherent microstructure. Overall, this study provides a comprehensive understanding of the creep behavior of Alloy 699XA after AM and CM processes, emphasizing the significance of AM-specific microstructural heterogeneities.
000616619 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000616619 536__ $$0G:(DE-H253)I-20220679-EC$$aFS-Proposal: I-20220679 EC (I-20220679-EC)$$cI-20220679-EC$$x1
000616619 536__ $$0G:(EU-Grant)958192$$atopAM - Tailoring ODS materials processing routes for additive manufacturing of high temperature devices for aggressive environments (958192)$$c958192$$fH2020-NMBP-ST-IND-2020-singlestage$$x2
000616619 542__ $$2Crossref$$i2024-05-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000616619 542__ $$2Crossref$$i2024-05-01$$uhttps://www.elsevier.com/legal/tdmrep-license
000616619 542__ $$2Crossref$$i2024-06-17$$uhttp://creativecommons.org/licenses/by/4.0/
000616619 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000616619 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x0
000616619 7001_ $$aBrasche, Frederike$$b1
000616619 7001_ $$00000-0003-3748-4515$$aŠulák, Ivo$$b2
000616619 7001_ $$00000-0001-9795-5513$$aVerma, Bhupesh$$b3
000616619 7001_ $$aNowak, Benedikt$$b4
000616619 7001_ $$aChlup, Zdeněk$$b5
000616619 7001_ $$aZáležák, Tomáš$$b6
000616619 7001_ $$aSchleifenbaum, Johannes Henrich$$b7
000616619 7001_ $$0P:(DE-H253)PIP1096404$$aKrupp, Ulrich$$b8
000616619 7001_ $$0P:(DE-HGF)0$$aHaase, Christian$$b9
000616619 77318 $$2Crossref$$3journal-article$$a10.1016/j.addma.2024.104267$$bElsevier BV$$d2024-05-01$$p104267$$tAdditive Manufacturing$$v88$$x2214-8604$$y2024
000616619 773__ $$0PERI:(DE-600)2777285-8$$a10.1016/j.addma.2024.104267$$gVol. 88, p. 104267 -$$p104267$$tAdditive manufacturing$$v88$$x2214-8604$$y2024
000616619 8564_ $$uhttps://bib-pubdb1.desy.de/record/616619/files/1-s2.0-S2214860424003130-main.pdf$$yOpenAccess
000616619 8564_ $$uhttps://bib-pubdb1.desy.de/record/616619/files/1-s2.0-S2214860424003130-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000616619 909CO $$ooai:bib-pubdb1.desy.de:616619$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000616619 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103191$$aExternal Institute$$b0$$kExtern
000616619 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096404$$aExternal Institute$$b8$$kExtern
000616619 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000616619 9141_ $$y2024
000616619 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000616619 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000616619 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000616619 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000616619 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADDIT MANUF : 2022$$d2025-01-02
000616619 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000616619 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000616619 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000616619 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
000616619 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000616619 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADDIT MANUF : 2022$$d2025-01-02
000616619 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000616619 980__ $$ajournal
000616619 980__ $$aVDB
000616619 980__ $$aUNRESTRICTED
000616619 980__ $$aI:(DE-H253)HAS-User-20120731
000616619 9801_ $$aFullTexts
000616619 999C5 $$1Panwisawas$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-16188-7$$p2327 -$$tNat. Commun.$$v11$$y2020
000616619 999C5 $$1Karlsson$$2Crossref$$oKarlsson 2020$$y2020
000616619 999C5 $$1Tian$$2Crossref$$oTian 2020$$y2020
000616619 999C5 $$1Hosseini$$2Crossref$$oHosseini 2019$$y2019
000616619 999C5 $$1Sanchez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijmachtools.2021.103729$$tInt. J. Mach. Tools Manuf.$$v165$$y2021
000616619 999C5 $$1Cheng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2021.141178$$tMater. Sci. Eng.: A$$v813$$y2021
000616619 999C5 $$1Cheng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2020.139704$$tMater. Sci. Eng.: A$$v790$$y2020
000616619 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.optlastec.2020.106504$$tOpt. Laser Technol.$$v133$$y2021
000616619 999C5 $$1Marucco$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00360729$$p4188 -$$tJ. Mater. Sci.$$v30$$y1995
000616619 999C5 $$1Gadalov$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00699584$$p522 -$$tMet Sci. Heat. Treat.$$v27$$y1985
000616619 999C5 $$1Zhong$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2012.10.001$$p369 -$$tCorros. Sci.$$v66$$y2013
000616619 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnucmat.2005.01.018$$p169 -$$tJ. Nucl. Mater.$$v341$$y2005
000616619 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.5516/NET.07.2012.021$$p67 -$$tNucl. Eng. Technol.$$v45$$y2013
000616619 999C5 $$1Bi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmst.2012.12.010$$p187 -$$tJ. Mater. Sci. Technol.$$v29$$y2013
000616619 999C5 $$1Ju$$2Crossref$$oJu 2012$$y2012
000616619 999C5 $$1Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2012.02.166$$p176 -$$tJ. Alloy. Compd.$$v527$$y2012
000616619 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2020.139185$$tMater. Sci. Eng.: A$$v780$$y2020
000616619 999C5 $$1Schlereth$$2Crossref$$9-- missing cx lookup --$$a10.1002/maco.202112935$$p1346 -$$tMater. Corros.$$v73$$y2022
000616619 999C5 $$2Crossref$$uB. Li, B. Gleeson, W.-T. Chen, H. Hattendorf, 2020, Effects of Minor Alloying Elements on the Metal-Dusting Behavior of Ni-Based Alloys, in: 2020: p. NACE-2020-14657.
000616619 999C5 $$2Crossref$$uH. Hattendorf, J. Kloewer, 2018, Alloy 699 XA - A New Alloy for Application Under Metal Dusting Conditions, in: 2018: p. NACE-2018-11200.
000616619 999C5 $$1Kwabena Adomako$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2022.111245$$tMater. Des.$$v223$$y2022
000616619 999C5 $$1Kok$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2017.11.021$$p565 -$$tMater. Des.$$v139$$y2018
000616619 999C5 $$1Tan$$2Crossref$$oTan 2016$$y2016
000616619 999C5 $$1Tan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2015.06.036$$p1 -$$tActa Mater.$$v97$$y2015
000616619 999C5 $$1Sun$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2014.11.012$$p305 -$$tActa Mater.$$v86$$y2015
000616619 999C5 $$1Kunze$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2014.10.003$$p213 -$$tMater. Sci. Eng.: A$$v620$$y2015
000616619 999C5 $$1Kuo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.scriptamat.2016.10.035$$p74 -$$tScr. Mater.$$v129$$y2017
000616619 999C5 $$1McLouth$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2020.139184$$tMater. Sci. Eng.: A$$v780$$y2020
000616619 999C5 $$1Wu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2021.117528$$tActa Mater.$$v224$$y2022
000616619 999C5 $$1Wu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2022.144047$$tMater. Sci. Eng.: A$$v857$$y2022
000616619 999C5 $$1Lindwall$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-018-4959-7$$p457 -$$tMet. Mater. Trans. A$$v50$$y2019
000616619 999C5 $$1Mostafaei$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pmatsci.2023.101108$$tProg. Mater. Sci.$$v136$$y2023
000616619 999C5 $$1Son$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mtla.2021.101021$$tMaterialia$$v15$$y2021
000616619 999C5 $$1Xu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2019.08.034$$p142 -$$tActa Mater.$$v179$$y2019
000616619 999C5 $$1Hilal$$2Crossref$$9-- missing cx lookup --$$a10.3390/ma12091390$$p1390 -$$tMaterials$$v12$$y2019
000616619 999C5 $$1Jeffs$$2Crossref$$9-- missing cx lookup --$$a10.4028/www.scientific.net/KEM.734.128$$p128 -$$tKey Eng. Mater.$$v734$$y2017
000616619 999C5 $$1Davies$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2018.08.039$$p39 -$$tMater. Des.$$v159$$y2018
000616619 999C5 $$1De Bruycker$$2Crossref$$9-- missing cx lookup --$$a10.1080/09603409.2022.2041849$$p462 -$$tMater. High. Temp.$$v39$$y2022
000616619 999C5 $$1Rae$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2006.09.026$$p1067 -$$tActa Mater.$$v55$$y2007
000616619 999C5 $$1Pollock$$2Crossref$$9-- missing cx lookup --$$a10.1016/0956-7151(92)90195-K$$p1 -$$tActa Metall. Et. Mater.$$v40$$y1992
000616619 999C5 $$1Svoboda$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1359-6454(00)00078-1$$p2519 -$$tActa Mater.$$v48$$y2000
000616619 999C5 $$1Bhowal$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02672587$$p1709 -$$tMet. Trans. A$$v21$$y1990
000616619 999C5 $$1Raujol$$2Crossref$$9-- missing cx lookup --$$a10.1080/14786430500254685$$p1189 -$$tPhilos. Mag.$$v86$$y2006
000616619 999C5 $$1Bachmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2011.08.002$$p1720 -$$tUltramicroscopy$$v111$$y2011
000616619 999C5 $$1Nolze$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716012942$$p1786 -$$tJ. Appl. Cryst.$$v49$$y2016
000616619 999C5 $$1Brandon$$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(66)90168-4$$p1479 -$$tActa Metall.$$v14$$y1966
000616619 999C5 $$1Ayad$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matchar.2020.110773$$tMater. Charact.$$v171$$y2021
000616619 999C5 $$1Haase$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2014.07.068$$p327 -$$tActa Mater.$$v80$$y2014
000616619 999C5 $$1Xu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2019.08.034$$p142 -$$tActa Mater.$$v179$$y2019
000616619 999C5 $$1Schneider$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2089$$p671 -$$tNat. Methods$$v9$$y2012
000616619 999C5 $$1Hammersley$$2Crossref$$9-- missing cx lookup --$$a10.1080/08957959608201408$$p235 -$$tHigh. Press. Res.$$v14$$y1996
000616619 999C5 $$1Hammersley$$2Crossref$$oHammersley 1997$$y1997
000616619 999C5 $$1Ferrari$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.358006$$p7246 -$$tJ. Appl. Phys.$$v76$$y1994
000616619 999C5 $$1Hostinský$$2Crossref$$9-- missing cx lookup --$$a10.1520/JTE10503J$$p26 -$$tJ. Test. Eval.$$v4$$y1976
000616619 999C5 $$1Pešička$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1359-6454(03)00324-0$$p4847 -$$tActa Mater.$$v51$$y2003
000616619 999C5 $$1Fu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matchar.2017.10.001$$p176 -$$tMater. Charact.$$v133$$y2017
000616619 999C5 $$1Durga$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.scriptamat.2020.113690$$tScr. Mater.$$v194$$y2021
000616619 999C5 $$1Després$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mtla.2021.101037$$tMaterialia$$v15$$y2021
000616619 999C5 $$1Després$$2Crossref$$oDesprés 2021$$y2021
000616619 999C5 $$1Yu$$2Crossref$$9-- missing cx lookup --$$a10.3390/met9010019$$p19 -$$tMetals$$v9$$y2019
000616619 999C5 $$1Cloots$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2015.10.027$$p770 -$$tMater. Des.$$v89$$y2016
000616619 999C5 $$1Hariharan$$2Crossref$$oHariharan 2019$$y2019
000616619 999C5 $$1Samy$$2Crossref$$oSamy 2024$$y2024
000616619 999C5 $$1Duan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmrt.2023.06.276$$p5426 -$$tJ. Mater. Res. Technol.$$v25$$y2023
000616619 999C5 $$1Saravanan$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-020-05970-3$$p5691 -$$tMet. Mater. Trans. A$$v51$$y2020
000616619 999C5 $$1Monkman$$2Crossref$$oMonkman 1956$$y1956
000616619 999C5 $$1Larson$$2Crossref$$9-- missing cx lookup --$$a10.1115/1.4015909$$p765 -$$tTrans. Am. Soc. Mech. Eng.$$v74$$y2022
000616619 999C5 $$1Sklenička$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijpvp.2019.104000$$tInt. J. Press. Vessels Pip.$$v178$$y2019
000616619 999C5 $$1Kassner$$2Crossref$$oKassner 2015$$y2015
000616619 999C5 $$1Lee$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnucmat.2016.06.038$$p85 -$$tJ. Nucl. Mater.$$v479$$y2016
000616619 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10853-014-8780-4$$p2167 -$$tJ. Mater. Sci.$$v50$$y2015
000616619 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.scriptamat.2006.05.013$$p457 -$$tScr. Mater.$$v55$$y2006
000616619 999C5 $$1Donachie$$2Crossref$$oDonachie 2002$$y2002
000616619 999C5 $$1Kihara$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02654716$$p1019 -$$tMet. Trans. A$$v11$$y1980
000616619 999C5 $$1Singh$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.engfailanal.2013.03.018$$p236 -$$tEng. Fail. Anal.$$v32$$y2013
000616619 999C5 $$1Bi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2009.10.039$$pS112 -$$tMater. Des.$$v31$$y2010
000616619 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2021.160723$$tJ. Alloy. Compd.$$v883$$y2021
000616619 999C5 $$1Grube$$2Crossref$$9-- missing cx lookup --$$a10.1179/cmq.1963.2.1.31$$p31 -$$tCan. Metall. Q.$$v2$$y1963
000616619 999C5 $$1Messé$$2Crossref$$oMessé 2018$$y2018
000616619 999C5 $$1Sourabh$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmrt.2022.01.060$$p1553 -$$tJ. Mater. Res. Technol.$$v17$$y2022
000616619 999C5 $$1Ivanchenko$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2006.02.207$$p458 -$$tMater. Sci. Eng.: A$$v442$$y2006
000616619 999C5 $$1Moss$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-012-1335-x$$p3428 -$$tMet. Mater. Trans. A$$v43$$y2012
000616619 999C5 $$1Risse$$2Crossref$$oRisse 2019$$y2019
000616619 999C5 $$1Murty$$2Crossref$$oMurty 2013$$y2013
000616619 999C5 $$1Manonukul$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1359-6454(02)00119-2$$p2917 -$$tActa Mater.$$v50$$y2002
000616619 999C5 $$1Thébaud$$2Crossref$$9-- missing cx lookup --$$a10.3390/met5042236$$p2236 -$$tMetals$$v5$$y2015
000616619 999C5 $$1Zhao$$2Crossref$$oZhao 2020$$y2020
000616619 999C5 $$1Lim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnucmat.2004.07.038$$p108 -$$tJ. Nucl. Mater.$$v335$$y2004
000616619 999C5 $$1Spader$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-020-05798-x$$p3473 -$$tMet. Mater. Trans. A$$v51$$y2020
000616619 999C5 $$1Schlegel$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-009-0027-7$$p2812 -$$tMet. Mater. Trans. A$$v40$$y2009
000616619 999C5 $$1Xu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-001-1014-9$$p795 -$$tMet. Mater. Trans. A$$v32$$y2001
000616619 999C5 $$2Crossref$$uT. Hentrich, H. Hattendorf, S. Bellmann, B. Nowak, 2023, Investigations on the Microstructural Stability After Long-Term High-Temperature Exposure of Alloy 699 XA, in: 2023: p. AMPP-2023-18845.
000616619 999C5 $$1Detrois$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11661-020-05822-0$$p3819 -$$tMet. Mater. Trans. A$$v51$$y2020
000616619 999C5 $$1El-Magd$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02648962$$p747 -$$tMet. Mater. Trans. A$$v27$$y1996
000616619 999C5 $$1Li$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2015.02.056$$p20 -$$tMater. Sci. Eng.: A$$v633$$y2015