000616403 001__ 616403
000616403 005__ 20250625124148.0
000616403 0247_ $$2doi$$a10.3390/s21010164
000616403 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06397
000616403 0247_ $$2pmid$$a33383766
000616403 0247_ $$2WOS$$aWOS:000606087000001
000616403 037__ $$aPUBDB-2024-06397
000616403 041__ $$aEnglish
000616403 082__ $$a620
000616403 1001_ $$00000-0001-6818-4414$$aMeshksar, Neda$$b0$$eCorresponding author
000616403 245__ $$aApplying Differential Wave-Front Sensing and Differential Power Sensing for Simultaneous Precise and Wide-Range Test-Mass Rotation Measurements
000616403 260__ $$aBasel$$bMDPI$$c2021
000616403 3367_ $$2DRIVER$$aarticle
000616403 3367_ $$2DataCite$$aOutput Types/Journal article
000616403 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729674179_782508
000616403 3367_ $$2BibTeX$$aARTICLE
000616403 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000616403 3367_ $$00$$2EndNote$$aJournal Article
000616403 520__ $$aWe propose to combine differential wave-front sensing (DWS) and differential power sensing (DPS) in a Mach-Zehnder type interferometer for measuring the rotational dynamics of a test-mass. Using the DWS method, a high sensitive measurement of 6 nrad Hz(-1/2) in sub-Hz frequencies can be provided around the test-mass nominal position (+/- 0.11 mrad), whereas the measurement of a wide rotation range (+/- 5 mrad) is realized by the DPS method. The interferometer can be combined with deep frequency modulation (DFM) interferometry for measurement of the test-mass translational dynamics. The setup and the resulting interferometric signals are verified by simulations. An optimization algorithm is applied to find suitable positions of the lenses and the waist size of the input laser in order to determine the best trade of between the slope of DWS, dynamic range of DPS, and the interferometric contrast. Our simulation further allows to investigate the layout for robustness and design tolerances. We compare our device with a recent experimental realization of a DFM interferometer and find that a practical implementation of the interferometer proposed here has the potential to provide translational and rotational test-mass tracking with state-of-the-art sensitivity. The simple and compact design, and especially the capability of sensing the test-mass rotation in a wide range and simultaneously providing a high-precision measurement close to the test-mass nominal position makes the design especially suitable for example for employment in torsion pendulum setups.
000616403 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000616403 536__ $$0G:(GEPRIS)390837967$$aDFG project G:(GEPRIS)390837967 - EXC 2123: QuantumFrontiers - Licht und Materie an der Quantengrenze (390837967)$$c390837967$$x1
000616403 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000616403 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000616403 7001_ $$00000-0001-9432-7108$$aMehmet, Moritz$$b1$$eCorresponding author
000616403 7001_ $$0P:(DE-H253)PIP1091679$$aIsleif, Katharina-Sophie$$b2
000616403 7001_ $$00000-0003-1661-7868$$aHeinzel, Gerhard$$b3
000616403 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s21010164$$gVol. 21, no. 1, p. 164 -$$n1$$p164 -$$tSensors$$v21$$x1424-8220$$y2021
000616403 8564_ $$uhttps://bib-pubdb1.desy.de/record/616403/files/sensors-21-00164-v2.pdf$$yOpenAccess
000616403 8564_ $$uhttps://bib-pubdb1.desy.de/record/616403/files/sensors-21-00164-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000616403 909CO $$ooai:bib-pubdb1.desy.de:616403$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000616403 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1091679$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000616403 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000616403 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
000616403 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000616403 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2022$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:03:14Z
000616403 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:03:14Z
000616403 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000616403 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000616403 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000616403 9201_ $$0I:(DE-H253)MSK-20120731$$kMSK$$lStrahlkontrollen$$x0
000616403 980__ $$ajournal
000616403 980__ $$aVDB
000616403 980__ $$aUNRESTRICTED
000616403 980__ $$aI:(DE-H253)MSK-20120731
000616403 9801_ $$aFullTexts