001     616402
005     20250715171507.0
024 7 _ |a 10.1016/j.scriptamat.2024.116416
|2 doi
024 7 _ |a 1359-6462
|2 ISSN
024 7 _ |a 1872-8456
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-06396
|2 datacite_doi
024 7 _ |a WOS:001342787300001
|2 WOS
024 7 _ |a altmetric:175595338
|2 altmetric
024 7 _ |2 openalex
|a openalex:W4403656499
037 _ _ |a PUBDB-2024-06396
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Katagiri, Kento
|0 P:(DE-H253)PIP1102557
|b 0
|e Corresponding author
245 _ _ |a X-ray induced grain boundary formation and grain rotation in Bi$_2$Se$_3$
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730725749_1883520
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optimizing grain boundary characteristics in polycrystalline materials can improve their properties. Many processing methods have been developed for grain boundary manipulation, including the use of intense radiation in certain applications. In this work, we used X-ray free electron laser pulses to irradiate single-crystalline bismuth selenide (Bi$_2$Se$_3$) and observed grain boundary formation and subsequent grain rotation in response to the X-ray radiation. Our observations with simultaneous transmission X-ray microscopy and X-ray diffraction demonstrate how intense X-ray radiation can rapidly change size and texture of grains.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Experiments at XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-Exp-20150101
|5 EXP:(DE-H253)XFEL-Exp-20150101
|x 0
700 1 _ |a Kozioziemski, Bernard
|b 1
700 1 _ |a Folsom, Eric
|b 2
700 1 _ |a Göde, Sebastian
|b 3
700 1 _ |a Wang, Yifan
|b 4
700 1 _ |a Appel, Karen
|0 P:(DE-H253)PIP1001646
|b 5
700 1 _ |a Chalise, Darshan
|b 6
700 1 _ |a Cook, Philip K.
|b 7
700 1 _ |a Eggert, Jon
|b 8
700 1 _ |a Howard, Marylesa
|b 9
700 1 _ |a Kim, Sungwon
|b 10
700 1 _ |a Konôpková, Zuzana
|0 P:(DE-H253)PIP1013606
|b 11
700 1 _ |a Makita, Mikako
|b 12
700 1 _ |a Nakatsutsumi, Motoaki
|0 P:(DE-H253)PIP1017893
|b 13
700 1 _ |a Nielsen, Martin M.
|0 P:(DE-H253)PIP1007352
|b 14
700 1 _ |a Pelka, Alexander
|0 P:(DE-H253)PIP1019850
|b 15
700 1 _ |a Poulsen, Henning F.
|b 16
700 1 _ |a Preston, Thomas R.
|0 P:(DE-H253)PIP1021816
|b 17
700 1 _ |a Reddy, Tharun
|b 18
700 1 _ |a Schwinkendorf, Jan-Patrick
|0 P:(DE-H253)PIP1007333
|b 19
700 1 _ |a Seiboth, Frank
|0 P:(DE-H253)PIP1013169
|b 20
700 1 _ |a Simons, Hugh
|b 21
700 1 _ |a Wang, Bihan
|b 22
700 1 _ |a Yang, Wenge
|b 23
700 1 _ |a Zastrau, Ulf
|0 P:(DE-H253)PIP1008691
|b 24
700 1 _ |a Kim, Hyunjung
|b 25
700 1 _ |a Dresselhaus-Marais, Leora
|0 P:(DE-H253)PIP1084573
|b 26
|e Corresponding author
773 _ _ |a 10.1016/j.scriptamat.2024.116416
|g Vol. 256, p. 116416 -
|0 PERI:(DE-600)2015843-9
|p 116416
|t Scripta materialia
|v 256
|y 2025
|x 1359-6462
856 4 _ |u https://bib-pubdb1.desy.de/record/616402/files/Publisher%20Version.pdf
856 4 _ |y Published on 2025-02-01. Available in OpenAccess from 2026-02-01.
|u https://bib-pubdb1.desy.de/record/616402/files/Bi2Se3.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/616402/files/Publisher%20Version.pdf?subformat=pdfa
856 4 _ |y Published on 2025-02-01. Available in OpenAccess from 2026-02-01.
|x pdfa
|u https://bib-pubdb1.desy.de/record/616402/files/Bi2Se3.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:616402
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1102557
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1102557
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1001646
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 11
|6 P:(DE-H253)PIP1013606
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1017893
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 14
|6 P:(DE-H253)PIP1007352
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1007352
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1019850
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1019850
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1021816
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 17
|6 P:(DE-H253)PIP1021816
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 19
|6 P:(DE-H253)PIP1007333
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1007333
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1013169
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 20
|6 P:(DE-H253)PIP1013169
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 24
|6 P:(DE-H253)PIP1008691
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 26
|6 P:(DE-H253)PIP1084573
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 26
|6 P:(DE-H253)PIP1084573
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCRIPTA MATER : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCRIPTA MATER : 2022
|d 2024-12-17
920 1 _ |0 I:(DE-H253)FS-PETRA-20140814
|k FS-PETRA
|l FS-PETRA
|x 0
920 1 _ |0 I:(DE-H253)XFEL_E1_HED-20210408
|k XFEL_E1_HED
|l HED
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-20140814
980 _ _ |a I:(DE-H253)XFEL_E1_HED-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21