001     616295
005     20250715171356.0
024 7 _ |a 10.1038/s41598-024-72805-1
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06389
|2 datacite_doi
024 7 _ |a 39414867
|2 pmid
024 7 _ |a WOS:001336670300098
|2 WOS
024 7 _ |2 openalex
|a openalex:W4403470456
037 _ _ |a PUBDB-2024-06389
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Hoang, Le Phuong
|b 0
245 _ _ |a Surface polarization profile of ferroelectric thin films probed by X-ray standing waves and photoelectron spectroscopy
260 _ _ |a [London]
|c 2024
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1731508324_2010877
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the mechanisms underlying a stable polarization at the surface of ferroelectric thin films is of particular importance both from a fundamental point of view and to achieve control of the surface polarization itself. In this study, we demonstrate that the X-ray standing wave technique allows the surface polarization profile of a ferroelectric thin film, as opposed to the average film polarity, to be probed directly. The X-ray standing wave technique provides the average Ti and Ba atomic positions, along the out-of-plane direction, near the surface of three differently strained BaTiO$_3$ thin films. This technique gives direct access to the local ferroelectric polarization at and below the surface. By employing X-ray photoelectron spectroscopy, a detailed overview of the oxygen-containing species adsorbed on the surface is obtained. The different amplitude and orientation of the local ferroelectric polarizations are associated with surface charges attributed to different type, amount and spatial distribution of the oxygen-containing adsorbates.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
542 _ _ |i 2024-10-16
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-10-16
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Spasojevic, Irena
|0 P:(DE-H253)PIP1091804
|b 1
700 1 _ |a Lee, Tien-Lin
|b 2
700 1 _ |a Pesquera, David
|0 P:(DE-H253)PIP1103146
|b 3
700 1 _ |a Rossnagel, Kai
|0 P:(DE-H253)PIP1007948
|b 4
700 1 _ |a Zegenhagen, Jörg
|0 P:(DE-H253)PIP1017792
|b 5
700 1 _ |a Catalan, Gustau
|0 P:(DE-H253)PIP1091817
|b 6
700 1 _ |a Vartanyants, Ivan A.
|0 P:(DE-H253)PIP1003481
|b 7
700 1 _ |a Scherz, Andreas
|0 P:(DE-H253)PIP1011014
|b 8
700 1 _ |a Mercurio, Giuseppe
|0 P:(DE-H253)PIP1019735
|b 9
|e Corresponding author
773 1 8 |a 10.1038/s41598-024-72805-1
|b Springer Science and Business Media LLC
|d 2024-10-16
|n 1
|p 24250
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-024-72805-1
|g Vol. 14, no. 1, p. 24250
|0 PERI:(DE-600)2615211-3
|n 1
|p 24250
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/616295/files/s41598-024-72805-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/616295/files/s41598-024-72805-1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:616295
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1091804
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1091804
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1103146
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1103146
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1007948
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1017792
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1091817
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1091817
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1003481
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1003481
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1011014
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1019735
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1019735
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FS-SXQM-20190201
|k FS-SXQM
|l FS-SXQM
|x 0
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 1
920 1 _ |0 I:(DE-H253)XFEL_E2_SCS-20210408
|k XFEL_E2_SCS
|l SCS
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-SXQM-20190201
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)XFEL_E2_SCS-20210408
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1002/adma.202108841
|9 -- missing cx lookup --
|1 A Fernandez
|p 2108841 -
|2 Crossref
|u Fernandez, A. et al. Thin-film ferroelectrics. Adv. Mater.  34, 2108841. https://doi.org/10.1002/adma.202108841 (2022).
|t Adv. Mater.
|v 34
|y 2022
999 C 5 |a 10.1038/s41928-020-00492-7
|9 -- missing cx lookup --
|1 AI Khan
|p 588 -
|2 Crossref
|u Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron.  3, 588–597. https://doi.org/10.1038/s41928-020-00492-7 (2020).
|t Nat. Electron.
|v 3
|y 2020
999 C 5 |a 10.1002/adma.202005098
|9 -- missing cx lookup --
|1 L Qi
|p 2005098 -
|2 Crossref
|u Qi, L., Ruan, S. & Zeng, Y.-J. Review on recent developments in 2D ferroelectrics: theories and applications. Adv. Mater.  33, 2005098. https://doi.org/10.1002/adma.202005098 (2021).
|t Adv. Mater.
|v 33
|y 2021
999 C 5 |a 10.1002/adfm.202109625
|9 -- missing cx lookup --
|1 X Han
|p 2109625 -
|2 Crossref
|u Han, X., Ji, Y. & Yang, Y. Ferroelectric photovoltaic materials and devices. Adv. Funct. Mater.  32, 2109625. https://doi.org/10.1002/adfm.202109625 (2022).
|t Adv. Funct. Mater.
|v 32
|y 2022
999 C 5 |a 10.1002/zamm.19630431016
|9 -- missing cx lookup --
|2 Crossref
|u Jona, F. & Shirane, G. Ferroelectric Crystals (Dover Publications Inc., 1993). https://doi.org/10.1002/zamm.19630431016
999 C 5 |a 10.1126/science.1103218
|9 -- missing cx lookup --
|1 KJ Choi
|p 1005 -
|2 Crossref
|u Choi, K. J. et al. Enhancement of ferroelectricity in strained $$\text{BaTiO}_3$$ thin films. Science  306, 1005–1009. https://doi.org/10.1126/science.1103218 (2004).
|t Science
|v 306
|y 2004
999 C 5 |a 10.1146/annurev.matsci.37.061206.113016
|9 -- missing cx lookup --
|1 DG Schlom
|p 589 -
|2 Crossref
|u Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res.  37, 589–626. https://doi.org/10.1146/annurev.matsci.37.061206.113016 (2007).
|t Annu. Rev. Mater. Res.
|v 37
|y 2007
999 C 5 |a 10.1103/PhysRevB.72.020102
|1 G Catalan
|9 -- missing cx lookup --
|2 Crossref
|u Catalan, G., Noheda, B., McAneney, J., Sinnamon, L. J. & Gregg, J. M. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B  72, 020102. https://doi.org/10.1103/PhysRevB.72.020102 (2005).
|t Phys. Rev. B
|v 72
|y 2005
999 C 5 |a 10.1007/978-3-662-08901-9_2
|9 -- missing cx lookup --
|2 Crossref
|u Harnagea, C. & Pignolet, A. Challenges in the Analysis of the Local Piezoelectric Response. In Alexe, M. & Gruverman, A. (eds.) Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach, NanoScience and Technology, 45–85. https://doi.org/10.1007/978-3-662-08901-9_2 (Springer, 2004).
999 C 5 |a 10.1080/10584580490460277
|9 -- missing cx lookup --
|1 LM Eng
|p 13 -
|2 Crossref
|u Eng, L. M. et al. Local dielectric and polarization properties of inner and outer interfaces in PZT thin films. Integr. Ferroelectr.  62, 13–21. https://doi.org/10.1080/10584580490460277 (2004).
|t Integr. Ferroelectr.
|v 62
|y 2004
999 C 5 |a 10.1073/pnas.2007736117
|9 -- missing cx lookup --
|1 C Gattinoni
|p 28589 -
|2 Crossref
|u Gattinoni, C. et al. Interface and surface stabilization of the polarization in ferroelectric thin films. Proc. Natl. Acad. Sci.  117, 28589–28595. https://doi.org/10.1073/pnas.2007736117 (2020).
|t Proc. Natl. Acad. Sci.
|v 117
|y 2020
999 C 5 |a 10.1103/PhysRevB.101.075410
|1 P-M Deleuze
|9 -- missing cx lookup --
|2 Crossref
|u Deleuze, P.-M., Domenichini, B. & Dupont, C. Ferroelectric polarization switching induced from water adsorption in $$\text{BaTiO}_{3}$$ ultrathin films. Phys. Rev. B  101, 075410. https://doi.org/10.1103/PhysRevB.101.075410 (2020).
|t Phys. Rev. B
|v 101
|y 2020
999 C 5 |a 10.1021/nl901824x
|9 -- missing cx lookup --
|1 J Shin
|p 3720 -
|2 Crossref
|u Shin, J. et al. Atomistic screening mechanism of ferroelectric surfaces: An in situ study of the polar phase in ultrathin $$\text{BaTiO}_{3}$$ films exposed to H$$_{2}$$O. Nano Lett.  9, 3720–3725. https://doi.org/10.1021/nl901824x (2009).
|t Nano Lett.
|v 9
|y 2009
999 C 5 |a 10.1021/jp305826e
|9 -- missing cx lookup --
|1 JL Wang
|p 21802 -
|2 Crossref
|u Wang, J. L. et al. Chemistry and atomic distortion at the surface of an epitaxial $$\text{BaTiO}_{\rm 3}$$ thin film after dissociative adsorption of water. J. Phys. Chem. C  116, 21802–21809. https://doi.org/10.1021/jp305826e (2012).
|t J. Phys. Chem. C
|v 116
|y 2012
999 C 5 |a 10.1021/acs.nanolett.5b05188
|9 -- missing cx lookup --
|1 H Lee
|p 2400 -
|2 Crossref
|u Lee, H. et al. Imprint control of $$\text{BaTiO}_{3}$$ thin films via chemically induced surface polarization pinning. Nano Lett.  16, 2400–2406. https://doi.org/10.1021/acs.nanolett.5b05188 (2016).
|t Nano Lett.
|v 16
|y 2016
999 C 5 |a 10.1103/PhysRevLett.84.4717
|9 -- missing cx lookup --
|1 CH Park
|p 4717 -
|2 Crossref
|u Park, C. H. & Chadi, D. J. Effect of interstitial hydrogen impurities on ferroelectric polarization in PbTiO$$_3$$. Phys. Rev. Lett.  84, 4717–4720. https://doi.org/10.1103/PhysRevLett.84.4717 (2000).
|t Phys. Rev. Lett.
|v 84
|y 2000
999 C 5 |a 10.1038/s41467-018-06369-w
|9 -- missing cx lookup --
|1 Y Tian
|p 3809 -
|2 Crossref
|u Tian, Y. et al. Water printing of ferroelectric polarization. Nat. Commun.  9, 3809. https://doi.org/10.1038/s41467-018-06369-w (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1103/PhysRevB.77.245437
|1 J Shin
|9 -- missing cx lookup --
|2 Crossref
|u Shin, J. et al. Polar distortion in ultrathin $$\text{BaTiO}_3$$ films studied by in situ LEED I–V. Phys. Rev. B  77, 245437. https://doi.org/10.1103/PhysRevB.77.245437 (2008).
|t Phys. Rev. B
|v 77
|y 2008
999 C 5 |a 10.1038/ncomms11318
|9 -- missing cx lookup --
|1 P Gao
|p 11318 -
|2 Crossref
|u Gao, P. et al. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat. Commun.  7, 11318. https://doi.org/10.1038/ncomms11318 (2016).
|t Nat. Commun.
|v 7
|y 2016
999 C 5 |a 10.1039/c9nr05526f
|9 -- missing cx lookup --
|1 N Domingo
|p 17920 -
|2 Crossref
|u Domingo, N. et al. Surface charged species and electrochemistry of ferroelectric thin films. Nanoscale  11, 17920–17930. https://doi.org/10.1039/c9nr05526f (2019).
|t Nanoscale
|v 11
|y 2019
999 C 5 |a 10.1103/PhysRevLett.102.047601
|1 RV Wang
|9 -- missing cx lookup --
|2 Crossref
|u Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett.  102, 047601. https://doi.org/10.1103/PhysRevLett.102.047601 (2009).
|t Phys. Rev. Lett.
|v 102
|y 2009
999 C 5 |a 10.1002/adma.200903723
|9 -- missing cx lookup --
|1 K Garrity
|p 2969 -
|2 Crossref
|u Garrity, K., Kolpak, A. M., Ismail-Beigi, S. & Altman, E. I. Chemistry of ferroelectric surfaces. Adv. Mater.  22, 2969–2973. https://doi.org/10.1002/adma.200903723 (2010).
|t Adv. Mater.
|v 22
|y 2010
999 C 5 |a 10.1021/acscatal.5b00507
|9 -- missing cx lookup --
|1 A Kakekhani
|p 4537 -
|2 Crossref
|u Kakekhani, A. & Ismail-Beigi, S. Ferroelectric-based catalysis: Switchable surface chemistry. ACS Catal.  5, 4537–4545. https://doi.org/10.1021/acscatal.5b00507 (2015).
|t ACS Catal.
|v 5
|y 2015
999 C 5 |a 10.1039/C6CP03170F
|9 -- missing cx lookup --
|1 A Kakekhani
|p 19676 -
|2 Crossref
|u Kakekhani, A. & Ismail-Beigi, S. Polarization-driven catalysis via ferroelectric oxide surfaces. Phys. Chem. Chem. Phys.  18, 19676–19695. https://doi.org/10.1039/C6CP03170F (2016).
|t Phys. Chem. Chem. Phys.
|v 18
|y 2016
999 C 5 |a 10.1063/1.5135751
|1 N Vonrüti
|9 -- missing cx lookup --
|2 Crossref
|u Vonrüti, N. & Aschauer, U. Catalysis on oxidized ferroelectric surfaces-Epitaxially strained $$\text{LaTiO}_{\rm 2}$$N and $$\text{BaTiO}_{\rm 3}$$ for photocatalytic water splitting. J. Chem. Phys.  152, 024701. https://doi.org/10.1063/1.5135751 (2020).
|t J. Chem. Phys.
|v 152
|y 2020
999 C 5 |a 10.1039/D1NR00847A
|9 -- missing cx lookup --
|1 TL Wan
|p 7096 -
|2 Crossref
|u Wan, T. L. et al. Catalysis based on ferroelectrics: Controllable chemical reaction with boosted efficiency. Nanoscale  13, 7096–7107. https://doi.org/10.1039/D1NR00847A (2021).
|t Nanoscale
|v 13
|y 2021
999 C 5 |a 10.1021/acscatal.1c03737
|9 -- missing cx lookup --
|1 Z Lan
|p 12692 -
|2 Crossref
|u Lan, Z. et al. Enhancing oxygen evolution reaction activity by using switchable polarization in ferroelectric InSnO2N. ACS Catal.  11, 12692–12700. https://doi.org/10.1021/acscatal.1c03737 (2021).
|t ACS Catal.
|v 11
|y 2021
999 C 5 |a 10.1103/PhysRevB.71.144112
|1 DD Fong
|9 -- missing cx lookup --
|2 Crossref
|u Fong, D. D. et al. Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron x-ray scattering measurements. Phys. Rev. B  71, 144112. https://doi.org/10.1103/PhysRevB.71.144112 (2005).
|t Phys. Rev. B
|v 71
|y 2005
999 C 5 |a 10.1140/epjb/e2006-00050-0
|9 -- missing cx lookup --
|1 L Despont
|p 141 -
|2 Crossref
|u Despont, L. et al. X-ray photoelectron diffraction study of ultrathin PbTiO3 films. Eur. Phys. J. B  49, 141–146. https://doi.org/10.1140/epjb/e2006-00050-0 (2006).
|t Eur. Phys. J. B
|v 49
|y 2006
999 C 5 |a 10.1103/PhysRevB.73.094110
|1 L Despont
|9 -- missing cx lookup --
|2 Crossref
|u Despont, L. et al. Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. Phys. Rev. B  73, 094110. https://doi.org/10.1103/PhysRevB.73.094110 (2006).
|t Phys. Rev. B
|v 73
|y 2006
999 C 5 |a 10.1063/1.3183938
|1 A Pancotti
|9 -- missing cx lookup --
|2 Crossref
|u Pancotti, A., Barrett, N., Zagonel, L. F. & Vanacore, G. M. Multiple scattering X-ray photoelectron diffraction study of the $$\text{SrTiO}_3$$(100) surface. J. Appl. Phys.  106, 034104. https://doi.org/10.1063/1.3183938 (2009).
|t J. Appl. Phys.
|v 106
|y 2009
999 C 5 |a 10.1103/PhysRevB.87.184116
|1 A Pancotti
|9 -- missing cx lookup --
|2 Crossref
|u Pancotti, A. et al. X-ray photoelectron diffraction study of relaxation and rumpling of ferroelectric domains in $$\text{BaTiO}_3$$(001). Phys. Rev. B  87, 184116. https://doi.org/10.1103/PhysRevB.87.184116 (2013).
|t Phys. Rev. B
|v 87
|y 2013
999 C 5 |a 10.1016/j.elspec.2022.147201
|1 RL Bouwmeester
|9 -- missing cx lookup --
|2 Crossref
|u Bouwmeester, R. L., Jansen, T., Altena, M., Koster, G. & Brinkman, A. Observing structural distortions in complex oxides by X-ray photoelectron diffraction. J. Electron. Spectrosc. Relat. Phenom.  257, 147201. https://doi.org/10.1016/j.elspec.2022.147201 (2022).
|t J. Electron. Spectrosc. Relat. Phenom.
|v 257
|y 2022
999 C 5 |a 10.1103/RevModPhys.36.681
|9 -- missing cx lookup --
|1 BW Batterman
|p 681 -
|2 Crossref
|u Batterman, B. W. & Cole, H. Dynamical diffraction of X rays by perfect crystals. Rev. Mod. Phys.  36, 681–717. https://doi.org/10.1103/RevModPhys.36.681 (1964).
|t Rev. Mod. Phys.
|v 36
|y 1964
999 C 5 |a 10.1016/0375-9601(84)90587-5
|9 -- missing cx lookup --
|1 G Materlik
|p 47 -
|2 Crossref
|u Materlik, G. & Zegenhagen, J. X-ray standing wave analysis with synchrotron radiation applied for surface and bulk systems. Phys. Lett. A  104, 47–50. https://doi.org/10.1016/0375-9601(84)90587-5 (1984).
|t Phys. Lett. A
|v 104
|y 1984
999 C 5 |a 10.1016/0167-5729(93)90025-K
|9 -- missing cx lookup --
|1 J Zegenhagen
|p 202 -
|2 Crossref
|u Zegenhagen, J. Surface structure determination with X-ray standing waves. Surf. Sci. Rep.  18, 202–271. https://doi.org/10.1016/0167-5729(93)90025-K (1993).
|t Surf. Sci. Rep.
|v 18
|y 1993
999 C 5 |a 10.1088/0034-4885/68/4/R01
|9 -- missing cx lookup --
|1 DP Woodruff
|p 743 -
|2 Crossref
|u Woodruff, D. P. Surface structure determination using X-ray standing waves. Rep. Prog. Phys.  68, 743. https://doi.org/10.1088/0034-4885/68/4/R01 (2005).
|t Rep. Prog. Phys.
|v 68
|y 2005
999 C 5 |a 10.1142/6666
|9 -- missing cx lookup --
|2 Crossref
|u Zegenhagen, J. & Kazimirov, A. The X-ray Standing Wave Technique: Principles and Applications (World Scientific, 2013). https://doi.org/10.1142/6666
999 C 5 |a 10.1103/PhysRevB.13.2524
|9 -- missing cx lookup --
|1 P Trucano
|p 2524 -
|2 Crossref
|u Trucano, P. Use of dynamical diffraction effects on X-ray fluorescence to determine the polarity of GaP single crystals. Phys. Rev. B  13, 2524–2531. https://doi.org/10.1103/PhysRevB.13.2524 (1976).
|t Phys. Rev. B
|v 13
|y 1976
999 C 5 |a 10.1063/1.368240
|9 -- missing cx lookup --
|1 A Kazimirov
|p 1703 -
|2 Crossref
|u Kazimirov, A. et al. Polarity determination of a GaN thin film on sapphire (0001) with X-ray standing waves. J. Appl. Phys.  84, 1703–1705. https://doi.org/10.1063/1.368240 (1998).
|t J. Appl. Phys.
|v 84
|y 1998
999 C 5 |a 10.1063/1.1364644
|9 -- missing cx lookup --
|1 A Kazimirov
|p 6092 -
|2 Crossref
|u Kazimirov, A. et al. High-resolution X-ray study of thin GaN film on SiC. J. Appl. Phys.  89, 6092–6097. https://doi.org/10.1063/1.1364644 (2001).
|t J. Appl. Phys.
|v 89
|y 2001
999 C 5 |a 10.1103/PhysRevB.61.R7873
|9 -- missing cx lookup --
|1 MJ Bedzyk
|p R7873 -
|2 Crossref
|u Bedzyk, M. J. et al. Probing the polarity of ferroelectric thin films with X-ray standing waves. Phys. Rev. B  61, R7873–R7876. https://doi.org/10.1103/PhysRevB.61.R7873 (2000).
|t Phys. Rev. B
|v 61
|y 2000
999 C 5 |a 10.1063/1.1385349
|9 -- missing cx lookup --
|1 DL Marasco
|p 515 -
|2 Crossref
|u Marasco, D. L. et al. Atomic-scale observation of polarization switching in epitaxial ferroelectric thin films. Appl. Phys. Lett.  79, 515–517. https://doi.org/10.1063/1.1385349 (2001).
|t Appl. Phys. Lett.
|v 79
|y 2001
999 C 5 |a 10.1107/S0365110X62003473
|9 -- missing cx lookup --
|1 S Takagi
|p 1311 -
|2 Crossref
|u Takagi, S. Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr.  15, 1311–1312. https://doi.org/10.1107/S0365110X62003473 (1962).
|t Acta Crystallogr.
|v 15
|y 1962
999 C 5 |a 10.1143/JPSJ.26.1239
|9 -- missing cx lookup --
|1 S Takagi
|p 1239 -
|2 Crossref
|u Takagi, S. A dynamical theory of diffraction for a distorted crystal. J. Phys. Soc. Jpn.  26, 1239–1253. https://doi.org/10.1143/JPSJ.26.1239 (1969).
|t J. Phys. Soc. Jpn.
|v 26
|y 1969
999 C 5 |a 10.3406/bulmi.1964.5769
|9 -- missing cx lookup --
|1 D Taupin
|p 469 -
|2 Crossref
|u Taupin, D. Théorie dynamique de la diffraction des rayons x par les cristaux déformés. Bull. Soc. Fr. Mineral. Cristallogr.  87, 469. https://doi.org/10.3406/bulmi.1964.5769 (1964).
|t Bull. Soc. Fr. Mineral. Cristallogr.
|v 87
|y 1964
999 C 5 |a 10.1088/0034-4885/64/9/201
|9 -- missing cx lookup --
|1 IA Vartanyants
|p 1009 -
|2 Crossref
|u Vartanyants, I. A. & Kovalchuk, M. V. Theory and applications of X-ray standing waves in real crystals. Rep. Prog. Phys.  64, 1009. https://doi.org/10.1088/0034-4885/64/9/201 (2001).
|t Rep. Prog. Phys.
|v 64
|y 2001
999 C 5 |a 10.1016/S0368-2048(99)00044-4
|9 -- missing cx lookup --
|1 A Jablonski
|p 137 -
|2 Crossref
|u Jablonski, A. & Powell, C. Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths. J. Electron Spectrosc. Relat. Phenom.  100, 137–160. https://doi.org/10.1016/S0368-2048(99)00044-4 (1999).
|t J. Electron Spectrosc. Relat. Phenom.
|v 100
|y 1999
999 C 5 |a 10.1016/S0167-5729(02)00031-6
|9 -- missing cx lookup --
|1 A Jablonski
|p 33 -
|2 Crossref
|u Jablonski, A. & Powell, C. J. The electron attenuation length revisited. Surf. Sci. Rep.  47, 33–91. https://doi.org/10.1016/S0167-5729(02)00031-6 (2002).
|t Surf. Sci. Rep.
|v 47
|y 2002
999 C 5 |a 10.1103/PhysRevB.83.064101
|1 A Vailionis
|9 -- missing cx lookup --
|2 Crossref
|u Vailionis, A. et al. Misfit strain accommodation in epitaxial ABO$$_{3}$$ perovskites: Lattice rotations and lattice modulations. Phys. Rev. B  83, 064101. https://doi.org/10.1103/PhysRevB.83.064101 (2011).
|t Phys. Rev. B
|v 83
|y 2011
999 C 5 |a 10.1063/1.2336999
|1 N Setter
|9 -- missing cx lookup --
|2 Crossref
|u Setter, N. et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys.  100, 051606. https://doi.org/10.1063/1.2336999 (2006).
|t J. Appl. Phys.
|v 100
|y 2006
999 C 5 |a 10.1073/pnas.1117990109
|9 -- missing cx lookup --
|1 P Yu
|p 9710 -
|2 Crossref
|u Yu, P. et al. Interface control of bulk ferroelectric polarization. Proc. Natl. Acad. Sci.  109, 9710–9715. https://doi.org/10.1073/pnas.1117990109 (2012).
|t Proc. Natl. Acad. Sci.
|v 109
|y 2012
999 C 5 |a 10.1038/s41467-017-01620-2
|9 -- missing cx lookup --
|1 G De Luca
|p 1419 -
|2 Crossref
|u De Luca, G. et al. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat. Commun.  8, 1419. https://doi.org/10.1038/s41467-017-01620-2 (2017).
|t Nat. Commun.
|v 8
|y 2017
999 C 5 |a 10.1063/1.1498151
|9 -- missing cx lookup --
|1 A Petraru
|p 1375 -
|2 Crossref
|u Petraru, A., Schubert, J., Schmid, M. & Buchal, C. Ferroelectric $$\text{BaTiO}_3$$ thin-film optical waveguide modulators. Appl. Phys. Lett.  81, 1375–1377. https://doi.org/10.1063/1.1498151 (2002).
|t Appl. Phys. Lett.
|v 81
|y 2002
999 C 5 |a 10.1080/08940886.2018.1483653
|9 -- missing cx lookup --
|1 T-L Lee
|p 16 -
|2 Crossref
|u Lee, T.-L. & Duncan, D. A. A two-color beamline for electron spectroscopies at diamond light source. Synchrotron. Radiat. News  31, 16–22. https://doi.org/10.1080/08940886.2018.1483653 (2018).
|t Synchrotron. Radiat. News
|v 31
|y 2018
999 C 5 |a 10.1038/sdata.2015.9
|1 M de Jong
|9 -- missing cx lookup --
|2 Crossref
|u de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data  2, 150009. https://doi.org/10.1038/sdata.2015.9 (2015).
|t Sci. Data
|v 2
|y 2015
999 C 5 |a 10.1063/1.125275
|9 -- missing cx lookup --
|1 HJ Kim
|p 3195 -
|2 Crossref
|u Kim, H. J., Oh, S. H. & Jang, H. M. Thermodynamic theory of stress distribution in epitaxial Pb(Zr, Ti)$$\text{O}_3$$ thin films. Appl. Phys. Lett.  75, 3195–3197. https://doi.org/10.1063/1.125275 (1999).
|t Appl. Phys. Lett.
|v 75
|y 1999
999 C 5 |a 10.1107/S1600576718012840
|9 -- missing cx lookup --
|1 C Lichtensteiger
|p 1745 -
|2 Crossref
|u Lichtensteiger, C. InteractiveXRDFit: A new tool to simulate and fit X-ray diffractograms of oxide thin films and heterostructures. J. Appl. Crystallogr.  51, 1745–1751. https://doi.org/10.1107/S1600576718012840 (2018).
|t J. Appl. Crystallogr.
|v 51
|y 2018
999 C 5 |a 10.1002/aelm.202000852
|9 -- missing cx lookup --
|1 C Weymann
|p 2000852 -
|2 Crossref
|u Weymann, C. et al. Full control of polarization in ferroelectric thin films using growth temperature to modulate defects. Adv. Electron. Mater.  6, 2000852. https://doi.org/10.1002/aelm.202000852 (2020).
|t Adv. Electron. Mater.
|v 6
|y 2020
999 C 5 |a 10.1002/admi.202000555
|9 -- missing cx lookup --
|1 H Wu
|p 2000555 -
|2 Crossref
|u Wu, H. et al. Direct observation of large atomic polar displacements in epitaxial barium titanate thin films. Adv. Mater. Interfaces  7, 2000555. https://doi.org/10.1002/admi.202000555 (2020).
|t Adv. Mater. Interfaces
|v 7
|y 2020
999 C 5 |a 10.1038/nmat4058
|9 -- missing cx lookup --
|1 Y-M Kim
|p 1019 -
|2 Crossref
|u Kim, Y.-M. et al. Direct observation of ferroelectric field effect and vacancy-controlled screening at the $$\text{BiFeO}_3$$/$$\text{La}_x$$$$\text{Sr}_{1-x}$$$$\text{MnO}_3$$ interface. Nat. Mater.  13, 1019–1025. https://doi.org/10.1038/nmat4058 (2014).
|t Nat. Mater.
|v 13
|y 2014
999 C 5 |a 10.1103/PhysRevLett.105.087204
|1 AY Borisevich
|9 -- missing cx lookup --
|2 Crossref
|u Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett.  105, 087204. https://doi.org/10.1103/PhysRevLett.105.087204 (2010).
|t Phys. Rev. Lett.
|v 105
|y 2010
999 C 5 |a 10.1016/j.cplett.2013.12.030
|9 -- missing cx lookup --
|1 JL Wang
|p 206 -
|2 Crossref
|u Wang, J. L. et al. Chemistry and structure of $$\text{BaTiO}_3$$ ultra-thin films grown by different $$\text{O}_2$$ plasma power. Chem. Phys. Lett.  592, 206–210. https://doi.org/10.1016/j.cplett.2013.12.030 (2014).
|t Chem. Phys. Lett.
|v 592
|y 2014
999 C 5 |a 10.1039/C8CP07632D
|9 -- missing cx lookup --
|1 N Domingo
|p 4920 -
|2 Crossref
|u Domingo, N. et al. Water adsorption, dissociation and oxidation on SrTiO$$_{3}$$ and ferroelectric surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys.  21, 4920–4930. https://doi.org/10.1039/C8CP07632D (2019).
|t Phys. Chem. Chem. Phys.
|v 21
|y 2019
999 C 5 |a 10.1016/j.apsusc.2021.150288
|1 I Spasojevic
|9 -- missing cx lookup --
|2 Crossref
|u Spasojevic, I., Sauthier, G., Caicedo, J. M., Verdaguer, A. & Domingo, N. Oxidation processes at the surface of $$\text{BaTiO}_3$$ thin films under environmental conditions. Appl. Surf. Sci.  565, 150288. https://doi.org/10.1016/j.apsusc.2021.150288 (2021).
|t Appl. Surf. Sci.
|v 565
|y 2021
999 C 5 |a 10.1021/acs.jpcc.2c02510
|9 -- missing cx lookup --
|1 P-M Deleuze
|p 15899 -
|2 Crossref
|u Deleuze, P.-M. et al. Nature of the Ba 4d splitting in $$\text{BaTiO}_3$$ unraveled by a combined experimental and theoretical study. J. Phys. Chem. C  126, 15899–15906. https://doi.org/10.1021/acs.jpcc.2c02510 (2022).
|t J. Phys. Chem. C
|v 126
|y 2022
999 C 5 |a 10.1103/PhysRevB.79.235420
|1 G Geneste
|9 -- missing cx lookup --
|2 Crossref
|u Geneste, G. & Dkhil, B. Adsorption and dissociation of $$\text{H}_2$$O on in-plane-polarized $$\text{BaTiO}_3$$ (001) surfaces and their relation to ferroelectricity. Phys. Rev. B  79, 235420. https://doi.org/10.1103/PhysRevB.79.235420 (2009).
|t Phys. Rev. B
|v 79
|y 2009
999 C 5 |a 10.1016/j.apsusc.2021.152018
|1 J Chun
|9 -- missing cx lookup --
|2 Crossref
|u Chun, J. et al. Surface termination of $$\text{BaTiO}_{3}$$(111) single crystal: A combined DFT and XPS study. Appl. Surf. Sci.  578, 152018. https://doi.org/10.1016/j.apsusc.2021.152018 (2022).
|t Appl. Surf. Sci.
|v 578
|y 2022
999 C 5 |a 10.1016/j.apsusc.2016.04.147
|9 -- missing cx lookup --
|1 J Landoulsi
|p 71 -
|2 Crossref
|u Landoulsi, J. et al. Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination. Appl. Surf. Sci.  383, 71–83. https://doi.org/10.1016/j.apsusc.2016.04.147 (2016).
|t Appl. Surf. Sci.
|v 383
|y 2016
999 C 5 |a 10.1016/0079-6816(84)90001-7
|9 -- missing cx lookup --
|1 CS Fadley
|p 275 -
|2 Crossref
|u Fadley, C. S. Angle-resolved X-ray photoelectron spectroscopy. Prog. Surf. Sci.  16, 275–388. https://doi.org/10.1016/0079-6816(84)90001-7 (1984).
|t Prog. Surf. Sci.
|v 16
|y 1984
999 C 5 |a 10.1103/PhysRevB.32.6456
|9 -- missing cx lookup --
|1 MJ Bedzyk
|p 6456 -
|2 Crossref
|u Bedzyk, M. J. & Materlik, G. Two-beam dynamical diffraction solution of the phase problem: A determination with X-ray standing-wave fields. Phys. Rev. B  32, 6456. https://doi.org/10.1103/PhysRevB.32.6456 (1985).
|t Phys. Rev. B
|v 32
|y 1985
999 C 5 |a 10.1103/PhysRevB.105.024106
|1 F Zhang
|9 -- missing cx lookup --
|2 Crossref
|u Zhang, F. et al. Correlations between polarization and structural information of supertetragonal $$\text{PbTiO}_{3}$$. Phys. Rev. B  105, 024106. https://doi.org/10.1103/PhysRevB.105.024106 (2022).
|t Phys. Rev. B
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRev.172.551
|9 -- missing cx lookup --
|1 SC Abrahams
|p 551 -
|2 Crossref
|u Abrahams, S. C., Kurtz, S. K. & Jamieson, P. B. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev.  172, 551–553. https://doi.org/10.1103/PhysRev.172.551 (1968).
|t Phys. Rev.
|v 172
|y 1968
999 C 5 |a 10.1016/j.nima.2005.05.025
|9 -- missing cx lookup --
|1 I Vartanyants
|p 196 -
|2 Crossref
|u Vartanyants, I., Lee, T.-L., Thiess, S. & Zegenhagen, J. Non-dipole effects in X-ray standing wave photoelectron spectroscopy experiments. Nucl. Instrum. Methods Phys.  547, 196–207. https://doi.org/10.1016/j.nima.2005.05.025 (2005).
|t Nucl. Instrum. Methods Phys.
|v 547
|y 2005
999 C 5 |a 10.1006/adnd.2000.0849
|9 -- missing cx lookup --
|1 M Trzhaskovskaya
|p 97 -
|2 Crossref
|u Trzhaskovskaya, M., Nefedov, V. & Yarzhemsky, V. Photoelectron angular distribution parameters for elements Z=1 to Z=54 in the photoelectron energy range 100–5000 eV. At. Data Nucl. Data Tables  77, 97–159. https://doi.org/10.1006/adnd.2000.0849 (2001).
|t At. Data Nucl. Data Tables
|v 77
|y 2001
999 C 5 |a 10.1006/adnd.2002.0886
|9 -- missing cx lookup --
|1 M Trzhaskovskaya
|p 257 -
|2 Crossref
|u Trzhaskovskaya, M., Nefedov, V. & Yarzhemsky, V. Photoelectron angular distribution parameters for elements Z=55 to Z=100 in the photoelectron energy range 100–5000 eV. At. Data Nucl. Data Tables  82, 257–311. https://doi.org/10.1006/adnd.2002.0886 (2002).
|t At. Data Nucl. Data Tables
|v 82
|y 2002
999 C 5 |a 10.1088/0034-4885/57/10/003
|9 -- missing cx lookup --
|1 DP Woodruff
|p 1029 -
|2 Crossref
|u Woodruff, D. P. & Bradshaw, A. M. Adsorbate structure determination on surfaces using photoelectron diffraction. Rep. Prog. Phys.  57, 1029–1080. https://doi.org/10.1088/0034-4885/57/10/003 (1994).
|t Rep. Prog. Phys.
|v 57
|y 1994
999 C 5 |a 10.1088/0022-3727/26/4A/041
|9 -- missing cx lookup --
|1 IA Vartanyantz
|p A197 -
|2 Crossref
|u Vartanyantz, I. A., Kovalchuk, M. V. & Beresovsky, V. M. Theoretical investigations of secondary emission yield and standing waves in curved crystals under dynamical Bragg diffraction of X-rays (Taupin problem). J. Phys. D Appl. Phys.  26, A197. https://doi.org/10.1088/0022-3727/26/4A/041 (1993).
|t J. Phys. D Appl. Phys.
|v 26
|y 1993
999 C 5 |a 10.1107/S0108768192001927
|9 -- missing cx lookup --
|1 AY Kazimirov
|p 577 -
|2 Crossref
|u Kazimirov, A. Y. et al. X-ray standing-wave analysis of the Bi preferential distribution in $$\text{Y}_{3-x}\text{Bi}_x\text{Fe}_5\text{O}_{{12}}$$ thin films. Acta Crystallogr. B Struct. Sci. Cryst.  48, 577–584. https://doi.org/10.1107/S0108768192001927 (1992).
|t Acta Crystallogr. B Struct. Sci. Cryst.
|v 48
|y 1992
999 C 5 |a 10.1016/S0038-1098(97)00335-9
|9 -- missing cx lookup --
|1 A Kazimirov
|p 347 -
|2 Crossref
|u Kazimirov, A. et al. Excitation of an X-ray standing wave in a $$\text{SmBa}_2\text{Cu}_3\text{O}_{7-\delta }$$ thin film. Solid State Commun.  104, 347–350. https://doi.org/10.1016/S0038-1098(97)00335-9 (1997).
|t Solid State Commun.
|v 104
|y 1997
999 C 5 |a 10.1016/S0038-1098(00)00040-5
|9 -- missing cx lookup --
|1 A Kazimirov
|p 271 -
|2 Crossref
|u Kazimirov, A. et al. X-ray standing-wave analysis of the rare-earth atomic positions in $$\text{RBa}_2\text{Cu}_3\text{O}_{7-\delta }$$ thin films. Solid State Commun.  114, 271–276. https://doi.org/10.1016/S0038-1098(00)00040-5 (2000).
|t Solid State Commun.
|v 114
|y 2000
999 C 5 |a 10.1080/08940880408603090
|9 -- missing cx lookup --
|1 A Kazimirov
|p 17 -
|2 Crossref
|u Kazimirov, A. et al. X-ray Standing Waves in Epitaxial Thin Films. Synchrotron. Radiat. News  17, 17–23. https://doi.org/10.1080/08940880408603090 (2004).
|t Synchrotron. Radiat. News
|v 17
|y 2004
999 C 5 |a 10.1038/s41563-018-0275-2
|9 -- missing cx lookup --
|1 NA Spaldin
|p 203 -
|2 Crossref
|u Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater.  18, 203–212. https://doi.org/10.1038/s41563-018-0275-2 (2019).
|t Nat. Mater.
|v 18
|y 2019
999 C 5 |a 10.1002/adfm.201000889
|9 -- missing cx lookup --
|1 JE Kleibeuker
|p 3490 -
|2 Crossref
|u Kleibeuker, J. E. et al. Atomically defined rare earth scandate crystal surfaces. Adv. Funct. Mater.  20, 3490–3496. https://doi.org/10.1002/adfm.201000889 (2010).
|t Adv. Funct. Mater.
|v 20
|y 2010
999 C 5 |2 Crossref
|u Everhardt, A. Novel phases in ferroelectric $$\text{BaTiO}_3$$ thin films: Enhanced piezoelectricity and low hysteresis. Ph.D. thesis, University of Groningen (2017). https://research.rug.nl/en/publications/novel-phases-in-ferroelectric-batio3-thin-films-enhanced-piezoele
999 C 5 |a 10.1063/1.1640472
|9 -- missing cx lookup --
|1 G Rijnders
|p 505 -
|2 Crossref
|u Rijnders, G., Blank, D. H. A., Choi, J. & Eom, C.-B. Enhanced surface diffusion through termination conversion during epitaxial $$\text{SrRuO}_3$$ growth. Appl. Phys. Lett.  84, 505–507. https://doi.org/10.1063/1.1640472 (2004).
|t Appl. Phys. Lett.
|v 84
|y 2004
999 C 5 |a 10.1021/acsami.7b07813
|9 -- missing cx lookup --
|1 YJ Shin
|p 27305 -
|2 Crossref
|u Shin, Y. J. et al. Oxygen partial pressure during pulsed laser deposition: Deterministic role on thermodynamic stability of atomic termination sequence at $$\text{SrRuO}_3$$/$$\text{BaTiO}_3$$ interface. ACS Appl. Mater. Interfaces  9, 27305–27312. https://doi.org/10.1021/acsami.7b07813 (2017).
|t ACS Appl. Mater. Interfaces
|v 9
|y 2017
999 C 5 |a 10.1002/adma.201602795
|9 -- missing cx lookup --
|1 YJ Shin
|p 1602795 -
|2 Crossref
|u Shin, Y. J. et al. Interface control of ferroelectricity in an $$\text{SrRuO}_3$$/$$\text{BaTiO}_3$$/$$\text{SrRuO}_3$$ capacitor and its critical thickness. Adv. Mater.  29, 1602795. https://doi.org/10.1002/adma.201602795 (2017).
|t Adv. Mater.
|v 29
|y 2017
999 C 5 |a 10.1016/S0921-4526(98)00243-9
|9 -- missing cx lookup --
|1 G Vignaud
|p 250 -
|2 Crossref
|u Vignaud, G. et al. Ordering of diblock PS-PBMA thin films: An X-ray reflectivity study. Phys. B: Condens. Matter  248, 250–257. https://doi.org/10.1016/S0921-4526(98)00243-9 (1998).
|t Phys. B: Condens. Matter
|v 248
|y 1998
999 C 5 |a 10.1103/PhysRev.95.359
|9 -- missing cx lookup --
|1 LG Parratt
|p 359 -
|2 Crossref
|u Parratt, L. G. Surface studies of solids by total reflection of X-rays. Phys. Rev.  95, 359–369. https://doi.org/10.1103/PhysRev.95.359 (1954).
|t Phys. Rev.
|v 95
|y 1954
999 C 5 |a 10.1002/3527607595
|9 -- missing cx lookup --
|2 Crossref
|u Birkholz, M. Thin Film Analysis by X-Ray Scattering (Wiley-VCH, 2005). https://onlinelibrary.wiley.com/doi/book/10.1002/3527607595
999 C 5 |a 10.1107/S002188988201231X
|9 -- missing cx lookup --
|1 RA Young
|p 430 -
|2 Crossref
|u Young, R. A. & Wiles, D. B. Profile shape functions in Rietveld refinements. J. Appl. Crystallogr.  15, 430–438. https://doi.org/10.1107/S002188988201231X (1982).
|t J. Appl. Crystallogr.
|v 15
|y 1982
999 C 5 |a 10.1088/0957-4484/18/47/475504
|1 BJ Rodriguez
|9 -- missing cx lookup --
|2 Crossref
|u Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology  18, 475504. https://doi.org/10.1088/0957-4484/18/47/475504 (2007).
|t Nanotechnology
|v 18
|y 2007
999 C 5 |2 Crossref
|u Maslen, E., Fox, A. G. & O’Keefe, M. A. International Tables for Crystallography, Vol. C (International Union of Crystallography, 2006).
999 C 5 |a 10.1006/adnd.1993.1013
|9 -- missing cx lookup --
|1 B Henke
|p 181 -
|2 Crossref
|u Henke, B., Gullikson, E. & Davis, J. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables  54, 181–342. https://doi.org/10.1006/adnd.1993.1013 (1993).
|t At. Data Nucl. Data Tables
|v 54
|y 1993
999 C 5 |a 10.1002/sia.6598
|9 -- missing cx lookup --
|2 Crossref
|u Shinotsuka, H., Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 ev to 200 keV range with the full Penn algorithm. Surf. Interface Anal. 51, 427–457. https://doi.org/10.1002/sia.6598 (2019).
999 C 5 |1 P Patnaik
|y 2002
|2 Crossref
|u Patnaik, P. Handbook of Inorganic Chemicals (McGraw-Hill, 2002).
|t Handbook of Inorganic Chemicals
999 C 5 |a 10.1016/j.matlet.2011.12.081
|9 -- missing cx lookup --
|1 K Ahadi
|p 107 -
|2 Crossref
|u Ahadi, K., Mahdavi, S.-M., Nemati, A., Tabesh, M. & Ranjbar, M. Electronic structure and morphological study of $$\text{BaTiO}_3$$ film grown by pulsed-laser deposition. Mater. Lett.  72, 107–109. https://doi.org/10.1016/j.matlet.2011.12.081 (2012).
|t Mater. Lett.
|v 72
|y 2012


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21