Home > Publications database > Surface polarization profile of ferroelectric thin films probed by X-ray standing waves and photoelectron spectroscopy > print |
001 | 616295 | ||
005 | 20250715171356.0 | ||
024 | 7 | _ | |a 10.1038/s41598-024-72805-1 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-06389 |2 datacite_doi |
024 | 7 | _ | |a 39414867 |2 pmid |
024 | 7 | _ | |a WOS:001336670300098 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4403470456 |
037 | _ | _ | |a PUBDB-2024-06389 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Hoang, Le Phuong |b 0 |
245 | _ | _ | |a Surface polarization profile of ferroelectric thin films probed by X-ray standing waves and photoelectron spectroscopy |
260 | _ | _ | |a [London] |c 2024 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1731508324_2010877 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Understanding the mechanisms underlying a stable polarization at the surface of ferroelectric thin films is of particular importance both from a fundamental point of view and to achieve control of the surface polarization itself. In this study, we demonstrate that the X-ray standing wave technique allows the surface polarization profile of a ferroelectric thin film, as opposed to the average film polarity, to be probed directly. The X-ray standing wave technique provides the average Ti and Ba atomic positions, along the out-of-plane direction, near the surface of three differently strained BaTiO$_3$ thin films. This technique gives direct access to the local ferroelectric polarization at and below the surface. By employing X-ray photoelectron spectroscopy, a detailed overview of the oxygen-containing species adsorbed on the surface is obtained. The different amplitude and orientation of the local ferroelectric polarizations are associated with surface charges attributed to different type, amount and spatial distribution of the oxygen-containing adsorbates. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
542 | _ | _ | |i 2024-10-16 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-10-16 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
700 | 1 | _ | |a Spasojevic, Irena |0 P:(DE-H253)PIP1091804 |b 1 |
700 | 1 | _ | |a Lee, Tien-Lin |b 2 |
700 | 1 | _ | |a Pesquera, David |0 P:(DE-H253)PIP1103146 |b 3 |
700 | 1 | _ | |a Rossnagel, Kai |0 P:(DE-H253)PIP1007948 |b 4 |
700 | 1 | _ | |a Zegenhagen, Jörg |0 P:(DE-H253)PIP1017792 |b 5 |
700 | 1 | _ | |a Catalan, Gustau |0 P:(DE-H253)PIP1091817 |b 6 |
700 | 1 | _ | |a Vartanyants, Ivan A. |0 P:(DE-H253)PIP1003481 |b 7 |
700 | 1 | _ | |a Scherz, Andreas |0 P:(DE-H253)PIP1011014 |b 8 |
700 | 1 | _ | |a Mercurio, Giuseppe |0 P:(DE-H253)PIP1019735 |b 9 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41598-024-72805-1 |b Springer Science and Business Media LLC |d 2024-10-16 |n 1 |p 24250 |3 journal-article |2 Crossref |t Scientific Reports |v 14 |y 2024 |x 2045-2322 |
773 | _ | _ | |a 10.1038/s41598-024-72805-1 |g Vol. 14, no. 1, p. 24250 |0 PERI:(DE-600)2615211-3 |n 1 |p 24250 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/616295/files/s41598-024-72805-1.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/616295/files/s41598-024-72805-1.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:616295 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1091804 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1091804 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1103146 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 3 |6 P:(DE-H253)PIP1103146 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1007948 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1017792 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1091817 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1091817 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1003481 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 7 |6 P:(DE-H253)PIP1003481 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1011014 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1019735 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 9 |6 P:(DE-H253)PIP1019735 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FS-SXQM-20190201 |k FS-SXQM |l FS-SXQM |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PS-20131107 |k FS-PS |l FS-Photon Science |x 1 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_E2_SCS-20210408 |k XFEL_E2_SCS |l SCS |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-SXQM-20190201 |
980 | _ | _ | |a I:(DE-H253)FS-PS-20131107 |
980 | _ | _ | |a I:(DE-H253)XFEL_E2_SCS-20210408 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1002/adma.202108841 |9 -- missing cx lookup -- |1 A Fernandez |p 2108841 - |2 Crossref |u Fernandez, A. et al. Thin-film ferroelectrics. Adv. Mater. 34, 2108841. https://doi.org/10.1002/adma.202108841 (2022). |t Adv. Mater. |v 34 |y 2022 |
999 | C | 5 | |a 10.1038/s41928-020-00492-7 |9 -- missing cx lookup -- |1 AI Khan |p 588 - |2 Crossref |u Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597. https://doi.org/10.1038/s41928-020-00492-7 (2020). |t Nat. Electron. |v 3 |y 2020 |
999 | C | 5 | |a 10.1002/adma.202005098 |9 -- missing cx lookup -- |1 L Qi |p 2005098 - |2 Crossref |u Qi, L., Ruan, S. & Zeng, Y.-J. Review on recent developments in 2D ferroelectrics: theories and applications. Adv. Mater. 33, 2005098. https://doi.org/10.1002/adma.202005098 (2021). |t Adv. Mater. |v 33 |y 2021 |
999 | C | 5 | |a 10.1002/adfm.202109625 |9 -- missing cx lookup -- |1 X Han |p 2109625 - |2 Crossref |u Han, X., Ji, Y. & Yang, Y. Ferroelectric photovoltaic materials and devices. Adv. Funct. Mater. 32, 2109625. https://doi.org/10.1002/adfm.202109625 (2022). |t Adv. Funct. Mater. |v 32 |y 2022 |
999 | C | 5 | |a 10.1002/zamm.19630431016 |9 -- missing cx lookup -- |2 Crossref |u Jona, F. & Shirane, G. Ferroelectric Crystals (Dover Publications Inc., 1993). https://doi.org/10.1002/zamm.19630431016 |
999 | C | 5 | |a 10.1126/science.1103218 |9 -- missing cx lookup -- |1 KJ Choi |p 1005 - |2 Crossref |u Choi, K. J. et al. Enhancement of ferroelectricity in strained $$\text{BaTiO}_3$$ thin films. Science 306, 1005–1009. https://doi.org/10.1126/science.1103218 (2004). |t Science |v 306 |y 2004 |
999 | C | 5 | |a 10.1146/annurev.matsci.37.061206.113016 |9 -- missing cx lookup -- |1 DG Schlom |p 589 - |2 Crossref |u Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626. https://doi.org/10.1146/annurev.matsci.37.061206.113016 (2007). |t Annu. Rev. Mater. Res. |v 37 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevB.72.020102 |1 G Catalan |9 -- missing cx lookup -- |2 Crossref |u Catalan, G., Noheda, B., McAneney, J., Sinnamon, L. J. & Gregg, J. M. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 72, 020102. https://doi.org/10.1103/PhysRevB.72.020102 (2005). |t Phys. Rev. B |v 72 |y 2005 |
999 | C | 5 | |a 10.1007/978-3-662-08901-9_2 |9 -- missing cx lookup -- |2 Crossref |u Harnagea, C. & Pignolet, A. Challenges in the Analysis of the Local Piezoelectric Response. In Alexe, M. & Gruverman, A. (eds.) Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach, NanoScience and Technology, 45–85. https://doi.org/10.1007/978-3-662-08901-9_2 (Springer, 2004). |
999 | C | 5 | |a 10.1080/10584580490460277 |9 -- missing cx lookup -- |1 LM Eng |p 13 - |2 Crossref |u Eng, L. M. et al. Local dielectric and polarization properties of inner and outer interfaces in PZT thin films. Integr. Ferroelectr. 62, 13–21. https://doi.org/10.1080/10584580490460277 (2004). |t Integr. Ferroelectr. |v 62 |y 2004 |
999 | C | 5 | |a 10.1073/pnas.2007736117 |9 -- missing cx lookup -- |1 C Gattinoni |p 28589 - |2 Crossref |u Gattinoni, C. et al. Interface and surface stabilization of the polarization in ferroelectric thin films. Proc. Natl. Acad. Sci. 117, 28589–28595. https://doi.org/10.1073/pnas.2007736117 (2020). |t Proc. Natl. Acad. Sci. |v 117 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevB.101.075410 |1 P-M Deleuze |9 -- missing cx lookup -- |2 Crossref |u Deleuze, P.-M., Domenichini, B. & Dupont, C. Ferroelectric polarization switching induced from water adsorption in $$\text{BaTiO}_{3}$$ ultrathin films. Phys. Rev. B 101, 075410. https://doi.org/10.1103/PhysRevB.101.075410 (2020). |t Phys. Rev. B |v 101 |y 2020 |
999 | C | 5 | |a 10.1021/nl901824x |9 -- missing cx lookup -- |1 J Shin |p 3720 - |2 Crossref |u Shin, J. et al. Atomistic screening mechanism of ferroelectric surfaces: An in situ study of the polar phase in ultrathin $$\text{BaTiO}_{3}$$ films exposed to H$$_{2}$$O. Nano Lett. 9, 3720–3725. https://doi.org/10.1021/nl901824x (2009). |t Nano Lett. |v 9 |y 2009 |
999 | C | 5 | |a 10.1021/jp305826e |9 -- missing cx lookup -- |1 JL Wang |p 21802 - |2 Crossref |u Wang, J. L. et al. Chemistry and atomic distortion at the surface of an epitaxial $$\text{BaTiO}_{\rm 3}$$ thin film after dissociative adsorption of water. J. Phys. Chem. C 116, 21802–21809. https://doi.org/10.1021/jp305826e (2012). |t J. Phys. Chem. C |v 116 |y 2012 |
999 | C | 5 | |a 10.1021/acs.nanolett.5b05188 |9 -- missing cx lookup -- |1 H Lee |p 2400 - |2 Crossref |u Lee, H. et al. Imprint control of $$\text{BaTiO}_{3}$$ thin films via chemically induced surface polarization pinning. Nano Lett. 16, 2400–2406. https://doi.org/10.1021/acs.nanolett.5b05188 (2016). |t Nano Lett. |v 16 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.84.4717 |9 -- missing cx lookup -- |1 CH Park |p 4717 - |2 Crossref |u Park, C. H. & Chadi, D. J. Effect of interstitial hydrogen impurities on ferroelectric polarization in PbTiO$$_3$$. Phys. Rev. Lett. 84, 4717–4720. https://doi.org/10.1103/PhysRevLett.84.4717 (2000). |t Phys. Rev. Lett. |v 84 |y 2000 |
999 | C | 5 | |a 10.1038/s41467-018-06369-w |9 -- missing cx lookup -- |1 Y Tian |p 3809 - |2 Crossref |u Tian, Y. et al. Water printing of ferroelectric polarization. Nat. Commun. 9, 3809. https://doi.org/10.1038/s41467-018-06369-w (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevB.77.245437 |1 J Shin |9 -- missing cx lookup -- |2 Crossref |u Shin, J. et al. Polar distortion in ultrathin $$\text{BaTiO}_3$$ films studied by in situ LEED I–V. Phys. Rev. B 77, 245437. https://doi.org/10.1103/PhysRevB.77.245437 (2008). |t Phys. Rev. B |v 77 |y 2008 |
999 | C | 5 | |a 10.1038/ncomms11318 |9 -- missing cx lookup -- |1 P Gao |p 11318 - |2 Crossref |u Gao, P. et al. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat. Commun. 7, 11318. https://doi.org/10.1038/ncomms11318 (2016). |t Nat. Commun. |v 7 |y 2016 |
999 | C | 5 | |a 10.1039/c9nr05526f |9 -- missing cx lookup -- |1 N Domingo |p 17920 - |2 Crossref |u Domingo, N. et al. Surface charged species and electrochemistry of ferroelectric thin films. Nanoscale 11, 17920–17930. https://doi.org/10.1039/c9nr05526f (2019). |t Nanoscale |v 11 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.102.047601 |1 RV Wang |9 -- missing cx lookup -- |2 Crossref |u Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601. https://doi.org/10.1103/PhysRevLett.102.047601 (2009). |t Phys. Rev. Lett. |v 102 |y 2009 |
999 | C | 5 | |a 10.1002/adma.200903723 |9 -- missing cx lookup -- |1 K Garrity |p 2969 - |2 Crossref |u Garrity, K., Kolpak, A. M., Ismail-Beigi, S. & Altman, E. I. Chemistry of ferroelectric surfaces. Adv. Mater. 22, 2969–2973. https://doi.org/10.1002/adma.200903723 (2010). |t Adv. Mater. |v 22 |y 2010 |
999 | C | 5 | |a 10.1021/acscatal.5b00507 |9 -- missing cx lookup -- |1 A Kakekhani |p 4537 - |2 Crossref |u Kakekhani, A. & Ismail-Beigi, S. Ferroelectric-based catalysis: Switchable surface chemistry. ACS Catal. 5, 4537–4545. https://doi.org/10.1021/acscatal.5b00507 (2015). |t ACS Catal. |v 5 |y 2015 |
999 | C | 5 | |a 10.1039/C6CP03170F |9 -- missing cx lookup -- |1 A Kakekhani |p 19676 - |2 Crossref |u Kakekhani, A. & Ismail-Beigi, S. Polarization-driven catalysis via ferroelectric oxide surfaces. Phys. Chem. Chem. Phys. 18, 19676–19695. https://doi.org/10.1039/C6CP03170F (2016). |t Phys. Chem. Chem. Phys. |v 18 |y 2016 |
999 | C | 5 | |a 10.1063/1.5135751 |1 N Vonrüti |9 -- missing cx lookup -- |2 Crossref |u Vonrüti, N. & Aschauer, U. Catalysis on oxidized ferroelectric surfaces-Epitaxially strained $$\text{LaTiO}_{\rm 2}$$N and $$\text{BaTiO}_{\rm 3}$$ for photocatalytic water splitting. J. Chem. Phys. 152, 024701. https://doi.org/10.1063/1.5135751 (2020). |t J. Chem. Phys. |v 152 |y 2020 |
999 | C | 5 | |a 10.1039/D1NR00847A |9 -- missing cx lookup -- |1 TL Wan |p 7096 - |2 Crossref |u Wan, T. L. et al. Catalysis based on ferroelectrics: Controllable chemical reaction with boosted efficiency. Nanoscale 13, 7096–7107. https://doi.org/10.1039/D1NR00847A (2021). |t Nanoscale |v 13 |y 2021 |
999 | C | 5 | |a 10.1021/acscatal.1c03737 |9 -- missing cx lookup -- |1 Z Lan |p 12692 - |2 Crossref |u Lan, Z. et al. Enhancing oxygen evolution reaction activity by using switchable polarization in ferroelectric InSnO2N. ACS Catal. 11, 12692–12700. https://doi.org/10.1021/acscatal.1c03737 (2021). |t ACS Catal. |v 11 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevB.71.144112 |1 DD Fong |9 -- missing cx lookup -- |2 Crossref |u Fong, D. D. et al. Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron x-ray scattering measurements. Phys. Rev. B 71, 144112. https://doi.org/10.1103/PhysRevB.71.144112 (2005). |t Phys. Rev. B |v 71 |y 2005 |
999 | C | 5 | |a 10.1140/epjb/e2006-00050-0 |9 -- missing cx lookup -- |1 L Despont |p 141 - |2 Crossref |u Despont, L. et al. X-ray photoelectron diffraction study of ultrathin PbTiO3 films. Eur. Phys. J. B 49, 141–146. https://doi.org/10.1140/epjb/e2006-00050-0 (2006). |t Eur. Phys. J. B |v 49 |y 2006 |
999 | C | 5 | |a 10.1103/PhysRevB.73.094110 |1 L Despont |9 -- missing cx lookup -- |2 Crossref |u Despont, L. et al. Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. Phys. Rev. B 73, 094110. https://doi.org/10.1103/PhysRevB.73.094110 (2006). |t Phys. Rev. B |v 73 |y 2006 |
999 | C | 5 | |a 10.1063/1.3183938 |1 A Pancotti |9 -- missing cx lookup -- |2 Crossref |u Pancotti, A., Barrett, N., Zagonel, L. F. & Vanacore, G. M. Multiple scattering X-ray photoelectron diffraction study of the $$\text{SrTiO}_3$$(100) surface. J. Appl. Phys. 106, 034104. https://doi.org/10.1063/1.3183938 (2009). |t J. Appl. Phys. |v 106 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevB.87.184116 |1 A Pancotti |9 -- missing cx lookup -- |2 Crossref |u Pancotti, A. et al. X-ray photoelectron diffraction study of relaxation and rumpling of ferroelectric domains in $$\text{BaTiO}_3$$(001). Phys. Rev. B 87, 184116. https://doi.org/10.1103/PhysRevB.87.184116 (2013). |t Phys. Rev. B |v 87 |y 2013 |
999 | C | 5 | |a 10.1016/j.elspec.2022.147201 |1 RL Bouwmeester |9 -- missing cx lookup -- |2 Crossref |u Bouwmeester, R. L., Jansen, T., Altena, M., Koster, G. & Brinkman, A. Observing structural distortions in complex oxides by X-ray photoelectron diffraction. J. Electron. Spectrosc. Relat. Phenom. 257, 147201. https://doi.org/10.1016/j.elspec.2022.147201 (2022). |t J. Electron. Spectrosc. Relat. Phenom. |v 257 |y 2022 |
999 | C | 5 | |a 10.1103/RevModPhys.36.681 |9 -- missing cx lookup -- |1 BW Batterman |p 681 - |2 Crossref |u Batterman, B. W. & Cole, H. Dynamical diffraction of X rays by perfect crystals. Rev. Mod. Phys. 36, 681–717. https://doi.org/10.1103/RevModPhys.36.681 (1964). |t Rev. Mod. Phys. |v 36 |y 1964 |
999 | C | 5 | |a 10.1016/0375-9601(84)90587-5 |9 -- missing cx lookup -- |1 G Materlik |p 47 - |2 Crossref |u Materlik, G. & Zegenhagen, J. X-ray standing wave analysis with synchrotron radiation applied for surface and bulk systems. Phys. Lett. A 104, 47–50. https://doi.org/10.1016/0375-9601(84)90587-5 (1984). |t Phys. Lett. A |v 104 |y 1984 |
999 | C | 5 | |a 10.1016/0167-5729(93)90025-K |9 -- missing cx lookup -- |1 J Zegenhagen |p 202 - |2 Crossref |u Zegenhagen, J. Surface structure determination with X-ray standing waves. Surf. Sci. Rep. 18, 202–271. https://doi.org/10.1016/0167-5729(93)90025-K (1993). |t Surf. Sci. Rep. |v 18 |y 1993 |
999 | C | 5 | |a 10.1088/0034-4885/68/4/R01 |9 -- missing cx lookup -- |1 DP Woodruff |p 743 - |2 Crossref |u Woodruff, D. P. Surface structure determination using X-ray standing waves. Rep. Prog. Phys. 68, 743. https://doi.org/10.1088/0034-4885/68/4/R01 (2005). |t Rep. Prog. Phys. |v 68 |y 2005 |
999 | C | 5 | |a 10.1142/6666 |9 -- missing cx lookup -- |2 Crossref |u Zegenhagen, J. & Kazimirov, A. The X-ray Standing Wave Technique: Principles and Applications (World Scientific, 2013). https://doi.org/10.1142/6666 |
999 | C | 5 | |a 10.1103/PhysRevB.13.2524 |9 -- missing cx lookup -- |1 P Trucano |p 2524 - |2 Crossref |u Trucano, P. Use of dynamical diffraction effects on X-ray fluorescence to determine the polarity of GaP single crystals. Phys. Rev. B 13, 2524–2531. https://doi.org/10.1103/PhysRevB.13.2524 (1976). |t Phys. Rev. B |v 13 |y 1976 |
999 | C | 5 | |a 10.1063/1.368240 |9 -- missing cx lookup -- |1 A Kazimirov |p 1703 - |2 Crossref |u Kazimirov, A. et al. Polarity determination of a GaN thin film on sapphire (0001) with X-ray standing waves. J. Appl. Phys. 84, 1703–1705. https://doi.org/10.1063/1.368240 (1998). |t J. Appl. Phys. |v 84 |y 1998 |
999 | C | 5 | |a 10.1063/1.1364644 |9 -- missing cx lookup -- |1 A Kazimirov |p 6092 - |2 Crossref |u Kazimirov, A. et al. High-resolution X-ray study of thin GaN film on SiC. J. Appl. Phys. 89, 6092–6097. https://doi.org/10.1063/1.1364644 (2001). |t J. Appl. Phys. |v 89 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRevB.61.R7873 |9 -- missing cx lookup -- |1 MJ Bedzyk |p R7873 - |2 Crossref |u Bedzyk, M. J. et al. Probing the polarity of ferroelectric thin films with X-ray standing waves. Phys. Rev. B 61, R7873–R7876. https://doi.org/10.1103/PhysRevB.61.R7873 (2000). |t Phys. Rev. B |v 61 |y 2000 |
999 | C | 5 | |a 10.1063/1.1385349 |9 -- missing cx lookup -- |1 DL Marasco |p 515 - |2 Crossref |u Marasco, D. L. et al. Atomic-scale observation of polarization switching in epitaxial ferroelectric thin films. Appl. Phys. Lett. 79, 515–517. https://doi.org/10.1063/1.1385349 (2001). |t Appl. Phys. Lett. |v 79 |y 2001 |
999 | C | 5 | |a 10.1107/S0365110X62003473 |9 -- missing cx lookup -- |1 S Takagi |p 1311 - |2 Crossref |u Takagi, S. Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr. 15, 1311–1312. https://doi.org/10.1107/S0365110X62003473 (1962). |t Acta Crystallogr. |v 15 |y 1962 |
999 | C | 5 | |a 10.1143/JPSJ.26.1239 |9 -- missing cx lookup -- |1 S Takagi |p 1239 - |2 Crossref |u Takagi, S. A dynamical theory of diffraction for a distorted crystal. J. Phys. Soc. Jpn. 26, 1239–1253. https://doi.org/10.1143/JPSJ.26.1239 (1969). |t J. Phys. Soc. Jpn. |v 26 |y 1969 |
999 | C | 5 | |a 10.3406/bulmi.1964.5769 |9 -- missing cx lookup -- |1 D Taupin |p 469 - |2 Crossref |u Taupin, D. Théorie dynamique de la diffraction des rayons x par les cristaux déformés. Bull. Soc. Fr. Mineral. Cristallogr. 87, 469. https://doi.org/10.3406/bulmi.1964.5769 (1964). |t Bull. Soc. Fr. Mineral. Cristallogr. |v 87 |y 1964 |
999 | C | 5 | |a 10.1088/0034-4885/64/9/201 |9 -- missing cx lookup -- |1 IA Vartanyants |p 1009 - |2 Crossref |u Vartanyants, I. A. & Kovalchuk, M. V. Theory and applications of X-ray standing waves in real crystals. Rep. Prog. Phys. 64, 1009. https://doi.org/10.1088/0034-4885/64/9/201 (2001). |t Rep. Prog. Phys. |v 64 |y 2001 |
999 | C | 5 | |a 10.1016/S0368-2048(99)00044-4 |9 -- missing cx lookup -- |1 A Jablonski |p 137 - |2 Crossref |u Jablonski, A. & Powell, C. Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths. J. Electron Spectrosc. Relat. Phenom. 100, 137–160. https://doi.org/10.1016/S0368-2048(99)00044-4 (1999). |t J. Electron Spectrosc. Relat. Phenom. |v 100 |y 1999 |
999 | C | 5 | |a 10.1016/S0167-5729(02)00031-6 |9 -- missing cx lookup -- |1 A Jablonski |p 33 - |2 Crossref |u Jablonski, A. & Powell, C. J. The electron attenuation length revisited. Surf. Sci. Rep. 47, 33–91. https://doi.org/10.1016/S0167-5729(02)00031-6 (2002). |t Surf. Sci. Rep. |v 47 |y 2002 |
999 | C | 5 | |a 10.1103/PhysRevB.83.064101 |1 A Vailionis |9 -- missing cx lookup -- |2 Crossref |u Vailionis, A. et al. Misfit strain accommodation in epitaxial ABO$$_{3}$$ perovskites: Lattice rotations and lattice modulations. Phys. Rev. B 83, 064101. https://doi.org/10.1103/PhysRevB.83.064101 (2011). |t Phys. Rev. B |v 83 |y 2011 |
999 | C | 5 | |a 10.1063/1.2336999 |1 N Setter |9 -- missing cx lookup -- |2 Crossref |u Setter, N. et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606. https://doi.org/10.1063/1.2336999 (2006). |t J. Appl. Phys. |v 100 |y 2006 |
999 | C | 5 | |a 10.1073/pnas.1117990109 |9 -- missing cx lookup -- |1 P Yu |p 9710 - |2 Crossref |u Yu, P. et al. Interface control of bulk ferroelectric polarization. Proc. Natl. Acad. Sci. 109, 9710–9715. https://doi.org/10.1073/pnas.1117990109 (2012). |t Proc. Natl. Acad. Sci. |v 109 |y 2012 |
999 | C | 5 | |a 10.1038/s41467-017-01620-2 |9 -- missing cx lookup -- |1 G De Luca |p 1419 - |2 Crossref |u De Luca, G. et al. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat. Commun. 8, 1419. https://doi.org/10.1038/s41467-017-01620-2 (2017). |t Nat. Commun. |v 8 |y 2017 |
999 | C | 5 | |a 10.1063/1.1498151 |9 -- missing cx lookup -- |1 A Petraru |p 1375 - |2 Crossref |u Petraru, A., Schubert, J., Schmid, M. & Buchal, C. Ferroelectric $$\text{BaTiO}_3$$ thin-film optical waveguide modulators. Appl. Phys. Lett. 81, 1375–1377. https://doi.org/10.1063/1.1498151 (2002). |t Appl. Phys. Lett. |v 81 |y 2002 |
999 | C | 5 | |a 10.1080/08940886.2018.1483653 |9 -- missing cx lookup -- |1 T-L Lee |p 16 - |2 Crossref |u Lee, T.-L. & Duncan, D. A. A two-color beamline for electron spectroscopies at diamond light source. Synchrotron. Radiat. News 31, 16–22. https://doi.org/10.1080/08940886.2018.1483653 (2018). |t Synchrotron. Radiat. News |v 31 |y 2018 |
999 | C | 5 | |a 10.1038/sdata.2015.9 |1 M de Jong |9 -- missing cx lookup -- |2 Crossref |u de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009. https://doi.org/10.1038/sdata.2015.9 (2015). |t Sci. Data |v 2 |y 2015 |
999 | C | 5 | |a 10.1063/1.125275 |9 -- missing cx lookup -- |1 HJ Kim |p 3195 - |2 Crossref |u Kim, H. J., Oh, S. H. & Jang, H. M. Thermodynamic theory of stress distribution in epitaxial Pb(Zr, Ti)$$\text{O}_3$$ thin films. Appl. Phys. Lett. 75, 3195–3197. https://doi.org/10.1063/1.125275 (1999). |t Appl. Phys. Lett. |v 75 |y 1999 |
999 | C | 5 | |a 10.1107/S1600576718012840 |9 -- missing cx lookup -- |1 C Lichtensteiger |p 1745 - |2 Crossref |u Lichtensteiger, C. InteractiveXRDFit: A new tool to simulate and fit X-ray diffractograms of oxide thin films and heterostructures. J. Appl. Crystallogr. 51, 1745–1751. https://doi.org/10.1107/S1600576718012840 (2018). |t J. Appl. Crystallogr. |v 51 |y 2018 |
999 | C | 5 | |a 10.1002/aelm.202000852 |9 -- missing cx lookup -- |1 C Weymann |p 2000852 - |2 Crossref |u Weymann, C. et al. Full control of polarization in ferroelectric thin films using growth temperature to modulate defects. Adv. Electron. Mater. 6, 2000852. https://doi.org/10.1002/aelm.202000852 (2020). |t Adv. Electron. Mater. |v 6 |y 2020 |
999 | C | 5 | |a 10.1002/admi.202000555 |9 -- missing cx lookup -- |1 H Wu |p 2000555 - |2 Crossref |u Wu, H. et al. Direct observation of large atomic polar displacements in epitaxial barium titanate thin films. Adv. Mater. Interfaces 7, 2000555. https://doi.org/10.1002/admi.202000555 (2020). |t Adv. Mater. Interfaces |v 7 |y 2020 |
999 | C | 5 | |a 10.1038/nmat4058 |9 -- missing cx lookup -- |1 Y-M Kim |p 1019 - |2 Crossref |u Kim, Y.-M. et al. Direct observation of ferroelectric field effect and vacancy-controlled screening at the $$\text{BiFeO}_3$$/$$\text{La}_x$$$$\text{Sr}_{1-x}$$$$\text{MnO}_3$$ interface. Nat. Mater. 13, 1019–1025. https://doi.org/10.1038/nmat4058 (2014). |t Nat. Mater. |v 13 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevLett.105.087204 |1 AY Borisevich |9 -- missing cx lookup -- |2 Crossref |u Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204. https://doi.org/10.1103/PhysRevLett.105.087204 (2010). |t Phys. Rev. Lett. |v 105 |y 2010 |
999 | C | 5 | |a 10.1016/j.cplett.2013.12.030 |9 -- missing cx lookup -- |1 JL Wang |p 206 - |2 Crossref |u Wang, J. L. et al. Chemistry and structure of $$\text{BaTiO}_3$$ ultra-thin films grown by different $$\text{O}_2$$ plasma power. Chem. Phys. Lett. 592, 206–210. https://doi.org/10.1016/j.cplett.2013.12.030 (2014). |t Chem. Phys. Lett. |v 592 |y 2014 |
999 | C | 5 | |a 10.1039/C8CP07632D |9 -- missing cx lookup -- |1 N Domingo |p 4920 - |2 Crossref |u Domingo, N. et al. Water adsorption, dissociation and oxidation on SrTiO$$_{3}$$ and ferroelectric surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 21, 4920–4930. https://doi.org/10.1039/C8CP07632D (2019). |t Phys. Chem. Chem. Phys. |v 21 |y 2019 |
999 | C | 5 | |a 10.1016/j.apsusc.2021.150288 |1 I Spasojevic |9 -- missing cx lookup -- |2 Crossref |u Spasojevic, I., Sauthier, G., Caicedo, J. M., Verdaguer, A. & Domingo, N. Oxidation processes at the surface of $$\text{BaTiO}_3$$ thin films under environmental conditions. Appl. Surf. Sci. 565, 150288. https://doi.org/10.1016/j.apsusc.2021.150288 (2021). |t Appl. Surf. Sci. |v 565 |y 2021 |
999 | C | 5 | |a 10.1021/acs.jpcc.2c02510 |9 -- missing cx lookup -- |1 P-M Deleuze |p 15899 - |2 Crossref |u Deleuze, P.-M. et al. Nature of the Ba 4d splitting in $$\text{BaTiO}_3$$ unraveled by a combined experimental and theoretical study. J. Phys. Chem. C 126, 15899–15906. https://doi.org/10.1021/acs.jpcc.2c02510 (2022). |t J. Phys. Chem. C |v 126 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevB.79.235420 |1 G Geneste |9 -- missing cx lookup -- |2 Crossref |u Geneste, G. & Dkhil, B. Adsorption and dissociation of $$\text{H}_2$$O on in-plane-polarized $$\text{BaTiO}_3$$ (001) surfaces and their relation to ferroelectricity. Phys. Rev. B 79, 235420. https://doi.org/10.1103/PhysRevB.79.235420 (2009). |t Phys. Rev. B |v 79 |y 2009 |
999 | C | 5 | |a 10.1016/j.apsusc.2021.152018 |1 J Chun |9 -- missing cx lookup -- |2 Crossref |u Chun, J. et al. Surface termination of $$\text{BaTiO}_{3}$$(111) single crystal: A combined DFT and XPS study. Appl. Surf. Sci. 578, 152018. https://doi.org/10.1016/j.apsusc.2021.152018 (2022). |t Appl. Surf. Sci. |v 578 |y 2022 |
999 | C | 5 | |a 10.1016/j.apsusc.2016.04.147 |9 -- missing cx lookup -- |1 J Landoulsi |p 71 - |2 Crossref |u Landoulsi, J. et al. Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination. Appl. Surf. Sci. 383, 71–83. https://doi.org/10.1016/j.apsusc.2016.04.147 (2016). |t Appl. Surf. Sci. |v 383 |y 2016 |
999 | C | 5 | |a 10.1016/0079-6816(84)90001-7 |9 -- missing cx lookup -- |1 CS Fadley |p 275 - |2 Crossref |u Fadley, C. S. Angle-resolved X-ray photoelectron spectroscopy. Prog. Surf. Sci. 16, 275–388. https://doi.org/10.1016/0079-6816(84)90001-7 (1984). |t Prog. Surf. Sci. |v 16 |y 1984 |
999 | C | 5 | |a 10.1103/PhysRevB.32.6456 |9 -- missing cx lookup -- |1 MJ Bedzyk |p 6456 - |2 Crossref |u Bedzyk, M. J. & Materlik, G. Two-beam dynamical diffraction solution of the phase problem: A determination with X-ray standing-wave fields. Phys. Rev. B 32, 6456. https://doi.org/10.1103/PhysRevB.32.6456 (1985). |t Phys. Rev. B |v 32 |y 1985 |
999 | C | 5 | |a 10.1103/PhysRevB.105.024106 |1 F Zhang |9 -- missing cx lookup -- |2 Crossref |u Zhang, F. et al. Correlations between polarization and structural information of supertetragonal $$\text{PbTiO}_{3}$$. Phys. Rev. B 105, 024106. https://doi.org/10.1103/PhysRevB.105.024106 (2022). |t Phys. Rev. B |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRev.172.551 |9 -- missing cx lookup -- |1 SC Abrahams |p 551 - |2 Crossref |u Abrahams, S. C., Kurtz, S. K. & Jamieson, P. B. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 172, 551–553. https://doi.org/10.1103/PhysRev.172.551 (1968). |t Phys. Rev. |v 172 |y 1968 |
999 | C | 5 | |a 10.1016/j.nima.2005.05.025 |9 -- missing cx lookup -- |1 I Vartanyants |p 196 - |2 Crossref |u Vartanyants, I., Lee, T.-L., Thiess, S. & Zegenhagen, J. Non-dipole effects in X-ray standing wave photoelectron spectroscopy experiments. Nucl. Instrum. Methods Phys. 547, 196–207. https://doi.org/10.1016/j.nima.2005.05.025 (2005). |t Nucl. Instrum. Methods Phys. |v 547 |y 2005 |
999 | C | 5 | |a 10.1006/adnd.2000.0849 |9 -- missing cx lookup -- |1 M Trzhaskovskaya |p 97 - |2 Crossref |u Trzhaskovskaya, M., Nefedov, V. & Yarzhemsky, V. Photoelectron angular distribution parameters for elements Z=1 to Z=54 in the photoelectron energy range 100–5000 eV. At. Data Nucl. Data Tables 77, 97–159. https://doi.org/10.1006/adnd.2000.0849 (2001). |t At. Data Nucl. Data Tables |v 77 |y 2001 |
999 | C | 5 | |a 10.1006/adnd.2002.0886 |9 -- missing cx lookup -- |1 M Trzhaskovskaya |p 257 - |2 Crossref |u Trzhaskovskaya, M., Nefedov, V. & Yarzhemsky, V. Photoelectron angular distribution parameters for elements Z=55 to Z=100 in the photoelectron energy range 100–5000 eV. At. Data Nucl. Data Tables 82, 257–311. https://doi.org/10.1006/adnd.2002.0886 (2002). |t At. Data Nucl. Data Tables |v 82 |y 2002 |
999 | C | 5 | |a 10.1088/0034-4885/57/10/003 |9 -- missing cx lookup -- |1 DP Woodruff |p 1029 - |2 Crossref |u Woodruff, D. P. & Bradshaw, A. M. Adsorbate structure determination on surfaces using photoelectron diffraction. Rep. Prog. Phys. 57, 1029–1080. https://doi.org/10.1088/0034-4885/57/10/003 (1994). |t Rep. Prog. Phys. |v 57 |y 1994 |
999 | C | 5 | |a 10.1088/0022-3727/26/4A/041 |9 -- missing cx lookup -- |1 IA Vartanyantz |p A197 - |2 Crossref |u Vartanyantz, I. A., Kovalchuk, M. V. & Beresovsky, V. M. Theoretical investigations of secondary emission yield and standing waves in curved crystals under dynamical Bragg diffraction of X-rays (Taupin problem). J. Phys. D Appl. Phys. 26, A197. https://doi.org/10.1088/0022-3727/26/4A/041 (1993). |t J. Phys. D Appl. Phys. |v 26 |y 1993 |
999 | C | 5 | |a 10.1107/S0108768192001927 |9 -- missing cx lookup -- |1 AY Kazimirov |p 577 - |2 Crossref |u Kazimirov, A. Y. et al. X-ray standing-wave analysis of the Bi preferential distribution in $$\text{Y}_{3-x}\text{Bi}_x\text{Fe}_5\text{O}_{{12}}$$ thin films. Acta Crystallogr. B Struct. Sci. Cryst. 48, 577–584. https://doi.org/10.1107/S0108768192001927 (1992). |t Acta Crystallogr. B Struct. Sci. Cryst. |v 48 |y 1992 |
999 | C | 5 | |a 10.1016/S0038-1098(97)00335-9 |9 -- missing cx lookup -- |1 A Kazimirov |p 347 - |2 Crossref |u Kazimirov, A. et al. Excitation of an X-ray standing wave in a $$\text{SmBa}_2\text{Cu}_3\text{O}_{7-\delta }$$ thin film. Solid State Commun. 104, 347–350. https://doi.org/10.1016/S0038-1098(97)00335-9 (1997). |t Solid State Commun. |v 104 |y 1997 |
999 | C | 5 | |a 10.1016/S0038-1098(00)00040-5 |9 -- missing cx lookup -- |1 A Kazimirov |p 271 - |2 Crossref |u Kazimirov, A. et al. X-ray standing-wave analysis of the rare-earth atomic positions in $$\text{RBa}_2\text{Cu}_3\text{O}_{7-\delta }$$ thin films. Solid State Commun. 114, 271–276. https://doi.org/10.1016/S0038-1098(00)00040-5 (2000). |t Solid State Commun. |v 114 |y 2000 |
999 | C | 5 | |a 10.1080/08940880408603090 |9 -- missing cx lookup -- |1 A Kazimirov |p 17 - |2 Crossref |u Kazimirov, A. et al. X-ray Standing Waves in Epitaxial Thin Films. Synchrotron. Radiat. News 17, 17–23. https://doi.org/10.1080/08940880408603090 (2004). |t Synchrotron. Radiat. News |v 17 |y 2004 |
999 | C | 5 | |a 10.1038/s41563-018-0275-2 |9 -- missing cx lookup -- |1 NA Spaldin |p 203 - |2 Crossref |u Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212. https://doi.org/10.1038/s41563-018-0275-2 (2019). |t Nat. Mater. |v 18 |y 2019 |
999 | C | 5 | |a 10.1002/adfm.201000889 |9 -- missing cx lookup -- |1 JE Kleibeuker |p 3490 - |2 Crossref |u Kleibeuker, J. E. et al. Atomically defined rare earth scandate crystal surfaces. Adv. Funct. Mater. 20, 3490–3496. https://doi.org/10.1002/adfm.201000889 (2010). |t Adv. Funct. Mater. |v 20 |y 2010 |
999 | C | 5 | |2 Crossref |u Everhardt, A. Novel phases in ferroelectric $$\text{BaTiO}_3$$ thin films: Enhanced piezoelectricity and low hysteresis. Ph.D. thesis, University of Groningen (2017). https://research.rug.nl/en/publications/novel-phases-in-ferroelectric-batio3-thin-films-enhanced-piezoele |
999 | C | 5 | |a 10.1063/1.1640472 |9 -- missing cx lookup -- |1 G Rijnders |p 505 - |2 Crossref |u Rijnders, G., Blank, D. H. A., Choi, J. & Eom, C.-B. Enhanced surface diffusion through termination conversion during epitaxial $$\text{SrRuO}_3$$ growth. Appl. Phys. Lett. 84, 505–507. https://doi.org/10.1063/1.1640472 (2004). |t Appl. Phys. Lett. |v 84 |y 2004 |
999 | C | 5 | |a 10.1021/acsami.7b07813 |9 -- missing cx lookup -- |1 YJ Shin |p 27305 - |2 Crossref |u Shin, Y. J. et al. Oxygen partial pressure during pulsed laser deposition: Deterministic role on thermodynamic stability of atomic termination sequence at $$\text{SrRuO}_3$$/$$\text{BaTiO}_3$$ interface. ACS Appl. Mater. Interfaces 9, 27305–27312. https://doi.org/10.1021/acsami.7b07813 (2017). |t ACS Appl. Mater. Interfaces |v 9 |y 2017 |
999 | C | 5 | |a 10.1002/adma.201602795 |9 -- missing cx lookup -- |1 YJ Shin |p 1602795 - |2 Crossref |u Shin, Y. J. et al. Interface control of ferroelectricity in an $$\text{SrRuO}_3$$/$$\text{BaTiO}_3$$/$$\text{SrRuO}_3$$ capacitor and its critical thickness. Adv. Mater. 29, 1602795. https://doi.org/10.1002/adma.201602795 (2017). |t Adv. Mater. |v 29 |y 2017 |
999 | C | 5 | |a 10.1016/S0921-4526(98)00243-9 |9 -- missing cx lookup -- |1 G Vignaud |p 250 - |2 Crossref |u Vignaud, G. et al. Ordering of diblock PS-PBMA thin films: An X-ray reflectivity study. Phys. B: Condens. Matter 248, 250–257. https://doi.org/10.1016/S0921-4526(98)00243-9 (1998). |t Phys. B: Condens. Matter |v 248 |y 1998 |
999 | C | 5 | |a 10.1103/PhysRev.95.359 |9 -- missing cx lookup -- |1 LG Parratt |p 359 - |2 Crossref |u Parratt, L. G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359–369. https://doi.org/10.1103/PhysRev.95.359 (1954). |t Phys. Rev. |v 95 |y 1954 |
999 | C | 5 | |a 10.1002/3527607595 |9 -- missing cx lookup -- |2 Crossref |u Birkholz, M. Thin Film Analysis by X-Ray Scattering (Wiley-VCH, 2005). https://onlinelibrary.wiley.com/doi/book/10.1002/3527607595 |
999 | C | 5 | |a 10.1107/S002188988201231X |9 -- missing cx lookup -- |1 RA Young |p 430 - |2 Crossref |u Young, R. A. & Wiles, D. B. Profile shape functions in Rietveld refinements. J. Appl. Crystallogr. 15, 430–438. https://doi.org/10.1107/S002188988201231X (1982). |t J. Appl. Crystallogr. |v 15 |y 1982 |
999 | C | 5 | |a 10.1088/0957-4484/18/47/475504 |1 BJ Rodriguez |9 -- missing cx lookup -- |2 Crossref |u Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504. https://doi.org/10.1088/0957-4484/18/47/475504 (2007). |t Nanotechnology |v 18 |y 2007 |
999 | C | 5 | |2 Crossref |u Maslen, E., Fox, A. G. & O’Keefe, M. A. International Tables for Crystallography, Vol. C (International Union of Crystallography, 2006). |
999 | C | 5 | |a 10.1006/adnd.1993.1013 |9 -- missing cx lookup -- |1 B Henke |p 181 - |2 Crossref |u Henke, B., Gullikson, E. & Davis, J. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342. https://doi.org/10.1006/adnd.1993.1013 (1993). |t At. Data Nucl. Data Tables |v 54 |y 1993 |
999 | C | 5 | |a 10.1002/sia.6598 |9 -- missing cx lookup -- |2 Crossref |u Shinotsuka, H., Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 ev to 200 keV range with the full Penn algorithm. Surf. Interface Anal. 51, 427–457. https://doi.org/10.1002/sia.6598 (2019). |
999 | C | 5 | |1 P Patnaik |y 2002 |2 Crossref |u Patnaik, P. Handbook of Inorganic Chemicals (McGraw-Hill, 2002). |t Handbook of Inorganic Chemicals |
999 | C | 5 | |a 10.1016/j.matlet.2011.12.081 |9 -- missing cx lookup -- |1 K Ahadi |p 107 - |2 Crossref |u Ahadi, K., Mahdavi, S.-M., Nemati, A., Tabesh, M. & Ranjbar, M. Electronic structure and morphological study of $$\text{BaTiO}_3$$ film grown by pulsed-laser deposition. Mater. Lett. 72, 107–109. https://doi.org/10.1016/j.matlet.2011.12.081 (2012). |t Mater. Lett. |v 72 |y 2012 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|