000616219 001__ 616219
000616219 005__ 20250723172600.0
000616219 0247_ $$2doi$$a10.1016/j.nima.2024.169841
000616219 0247_ $$2ISSN$$a0167-5087
000616219 0247_ $$2ISSN$$a0168-9002
000616219 0247_ $$2ISSN$$a1872-9576
000616219 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06379
000616219 0247_ $$2altmetric$$aaltmetric:167174625
000616219 0247_ $$2arXiv$$aarXiv:2409.06435
000616219 0247_ $$2WOS$$aWOS:001318607100001
000616219 0247_ $$2openalex$$aopenalex:W4402449252
000616219 037__ $$aPUBDB-2024-06379
000616219 041__ $$aEnglish
000616219 082__ $$a530
000616219 088__ $$2arXiv$$aarXiv:2409.06435
000616219 088__ $$2arXiv$$aarXiv:2409.06435
000616219 1001_ $$0P:(DE-HGF)0$$aSchwab, B.$$b0$$eCorresponding author
000616219 245__ $$aCTC and CT5TEA: An advanced multi-channel digitizer and trigger ASIC for imaging atmospheric Cherenkov telescopes
000616219 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2024
000616219 3367_ $$2DRIVER$$aarticle
000616219 3367_ $$2DataCite$$aOutput Types/Journal article
000616219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730206383_2650407
000616219 3367_ $$2BibTeX$$aARTICLE
000616219 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000616219 3367_ $$00$$2EndNote$$aJournal Article
000616219 500__ $$a18 pages, 26 figures, 1 table
000616219 520__ $$aWe have developed a new set of Application-Specific Integrated Circuits (ASICs) of the TARGET family (CTC and CT5TEA), designed for the readout of signals from photosensors in cameras of Imaging Atmospheric Cherenkov Telescopes (IACTs) for ground-based gamma-ray astronomy. We present the performance and design details. Both ASICs feature 16 channels, with CTC being a Switched-Capacitor Array (SCA) sampler at 0.5 to 1GSa/s with a 16,384 sample deep storage buffer, including the functionality to digitize full waveforms at arbitrary times. CT5TEA is its companion trigger ASIC (though may be used on its own), which provides trigger information for the analog sum of four (and 16) adjacent channels. Since sampling and triggering takes place in two separate ASICs, the noise due to interference from the SCA is suppressed, and allows a minimal trigger threshold of ≤ 2.5 mV (0.74photo electrons (p.e.)) with a trigger noise of ≤ 0.5 mV (0.15p.e.). For CTC, a maximal input voltage range from −0.5V up to 1.7V is achieved with an effective bit range of > 11.6bits and a baseline noise of 0.7 mV. The cross-talk improved to ≤ 1% over the whole −3 dB bandwidth of 220MHz and even down to 0.2% for 1.5V pulses of 10 ns width. Not only is the performance presented, but a temperature-stable calibration routine for pulse mode operation is introduced and validated. The resolution is found to be ∼ 2.5% at 33.7 mV (10p.e.) and ≤ 0.3% at 337 mV (100p.e.) with an integrated non-linearity of < 1.6mV. Developed for the Small-Sized Telescope (SST) and Schwarzschild-Couder Telescope (SCT) cameras of the Cherenkov Telescope Array Observatory (CTAO), CTC and CT5TEA are deployed for both prototypes and shall be integrated into the final versions.
000616219 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000616219 542__ $$2Crossref$$i2024-12-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000616219 542__ $$2Crossref$$i2024-12-01$$uhttps://www.elsevier.com/legal/tdmrep-license
000616219 542__ $$2Crossref$$i2024-09-09$$uhttp://creativecommons.org/licenses/by/4.0/
000616219 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000616219 650_7 $$2autogen$$a0000
000616219 650_7 $$2autogen$$a1111
000616219 650_7 $$2autogen$$aData acquisition circuits
000616219 650_7 $$2autogen$$aTrigger concepts and systems (hardware and software)
000616219 650_7 $$2autogen$$aGamma telescopes
000616219 650_7 $$2autogen$$aImaging air Cherenkov telescope
000616219 650_7 $$2autogen$$aCamera electronics
000616219 693__ $$0EXP:(DE-H253)CTA-20150101$$5EXP:(DE-H253)CTA-20150101$$eCherenkov Telescope Array$$x0
000616219 7001_ $$0P:(DE-HGF)0$$aZink, A.$$b1$$eCorresponding author
000616219 7001_ $$0P:(DE-H253)PIP1030359$$aVarner, Gary$$b2
000616219 7001_ $$0P:(DE-HGF)0$$aDepaoli, D.$$b3
000616219 7001_ $$0P:(DE-HGF)0$$aHinton, J.$$b4
000616219 7001_ $$0P:(DE-HGF)0$$aLiu, G.$$b5
000616219 7001_ $$0P:(DE-HGF)0$$aOkumura, A.$$b6
000616219 7001_ $$0P:(DE-HGF)0$$aRoss, D.$$b7
000616219 7001_ $$0P:(DE-HGF)0$$aSchäfer, J.$$b8
000616219 7001_ $$0P:(DE-HGF)0$$aSchoorlemmer, H.$$b9
000616219 7001_ $$0P:(DE-HGF)0$$aTajima, H.$$b10
000616219 7001_ $$0P:(DE-HGF)0$$aVandenbroucke, J.$$b11
000616219 7001_ $$0P:(DE-H253)PIP1093176$$aWhite, Richard$$b12
000616219 7001_ $$0P:(DE-H253)PIP1091973$$aWatson, Jason John$$b13$$udesy
000616219 7001_ $$0P:(DE-H253)PIP1027660$$aZorn, Justus$$b14
000616219 7001_ $$0P:(DE-H253)PIP1033344$$aFunk, Stefan$$b15
000616219 77318 $$2Crossref$$3journal-article$$a10.1016/j.nima.2024.169841$$bElsevier BV$$d2024-12-01$$p169841$$tNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment$$v1069$$x0168-9002$$y2024
000616219 773__ $$0PERI:(DE-600)1466532-3$$a10.1016/j.nima.2024.169841$$gVol. 1069, p. 169841 -$$p169841$$tNuclear instruments & methods in physics research / Section A$$v1069$$x0168-9002$$y2024
000616219 7870_ $$0PUBDB-2024-06558$$aSchwab, Benjamin et.al.$$d2024$$iIsParent$$rarXiv:2409.06435$$tCTC and CT5TEA: An advanced multi-channel digitizer and trigger ASIC for imaging atmospheric Cherenkov telescopes
000616219 8564_ $$uhttps://bib-pubdb1.desy.de/record/616219/files/1-s2.0-S0168900224007678-main.pdf$$yOpenAccess
000616219 8564_ $$uhttps://bib-pubdb1.desy.de/record/616219/files/1-s2.0-S0168900224007678-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000616219 909CO $$ooai:bib-pubdb1.desy.de:616219$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000616219 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030359$$aExternal Institute$$b2$$kExtern
000616219 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1093176$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b12$$kMPG
000616219 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093176$$aExternal Institute$$b12$$kExtern
000616219 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1091973$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000616219 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033344$$aExternal Institute$$b15$$kExtern
000616219 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000616219 9141_ $$y2024
000616219 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000616219 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
000616219 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000616219 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
000616219 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
000616219 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH A : 2022$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000616219 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
000616219 9201_ $$0I:(DE-H253)Z_CTA-20210408$$kZ_CTA$$lCherenkov Telescope Array$$x0
000616219 980__ $$ajournal
000616219 980__ $$aVDB
000616219 980__ $$aUNRESTRICTED
000616219 980__ $$aI:(DE-H253)Z_CTA-20210408
000616219 9801_ $$aFullTexts
000616219 999C5 $$2Crossref$$o2019$$y2019
000616219 999C5 $$1Tagliaferri$$2Crossref$$oTagliaferri 2022$$y2022
000616219 999C5 $$1Vassiliev$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.astropartphys.2007.04.002$$p10 -$$tAstropart. Phys.$$v28$$y2007
000616219 999C5 $$1Wood$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.astropartphys.2015.04.008$$p11 -$$tAstropart. Phys.$$v72$$y2016
000616219 999C5 $$1Bechtol$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.astropartphys.2012.05.016$$p156 -$$tAstropart. Phys.$$v36$$y2012
000616219 999C5 $$1Albert$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.astropartphys.2017.05.003$$p49 -$$tAstropart. Phys.$$v92$$y2017
000616219 999C5 $$1Antonelli$$2Crossref$$oAntonelli 2023$$y2023
000616219 999C5 $$1Adams$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.astropartphys.2021.102562$$tAstropart. Phys.$$v128$$y2021
000616219 999C5 $$1Funk$$2Crossref$$oFunk 2017$$y2017
000616219 999C5 $$1Tibaldo$$2Crossref$$oTibaldo 2016$$y2016
000616219 999C5 $$1CTA$$2Crossref$$oCTA 2024$$y2024
000616219 999C5 $$2Crossref$$o2022$$y2022
000616219 999C5 $$1CTA$$2Crossref$$oCTA 2024$$y2024
000616219 999C5 $$1Butterworth$$2Crossref$$oButterworth 1930$$y1930
000616219 999C5 $$1Stricker-Shaver$$2Crossref$$9-- missing cx lookup --$$a10.1109/TNS.2014.2366071$$p3607 -$$tIEEE Trans. Nucl. Sci.$$v61$$y2014
000616219 999C5 $$1Adams$$2Crossref$$oAdams 2022$$y2022
000616219 999C5 $$1Taylor$$2Crossref$$oTaylor 2022$$y2022
000616219 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.358.0179$$uK. Andeen, M. Schaufel, J. Auffenberg, IceAct, small Imaging Air Cherenkov Telescopes for IceCube, in: Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019), 358, 2019, p. 179, http://dx.doi.org/10.22323/1.358.0179.
000616219 999C5 $$1Abbasi$$2Crossref$$oAbbasi 2021$$y2021