000616201 001__ 616201
000616201 005__ 20250625130228.0
000616201 0247_ $$2doi$$a10.1038/s41598-024-75686-6
000616201 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06361
000616201 0247_ $$2pmid$$a39414882
000616201 0247_ $$2WOS$$aWOS:001336670300020
000616201 037__ $$aPUBDB-2024-06361
000616201 041__ $$aEnglish
000616201 082__ $$a600
000616201 1001_ $$0P:(DE-HGF)0$$aShchur, Yaroslav$$b0$$eCorresponding author
000616201 245__ $$aSynthesis, nanocrystalline morphology, lattice dynamics and nonlinear optics of mesoporous
000616201 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2024
000616201 3367_ $$2DRIVER$$aarticle
000616201 3367_ $$2DataCite$$aOutput Types/Journal article
000616201 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730119346_1071331
000616201 3367_ $$2BibTeX$$aARTICLE
000616201 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000616201 3367_ $$00$$2EndNote$$aJournal Article
000616201 520__ $$aWe demonstrate a hybrid nanocomposite combining mesoporous silica, pSiO$_2$, as a host medium and guest lithium niobate LiNbO$_3$ nanocrystals embedded into tubular silica nanochannels by calcination of the precursor mixed solution of lithium and niobium salts. High-resolution transmission electron microscopy, X-ray diffraction and Raman scattering techniques reveal trigonal LiNbO3 nanocrystals within the pSiO$_2$ nanochannels, indicating their random texture morphology. Annealing at high temperatures ( 950◦C) during calcination also leads to partial crystallization of the pSiO$_2$ matrix with the formation of trigonal α-SiO$_2$ nanocrystals. The Raman microscopy analysis of the pSiO$_2$:LiNbO$_3$ nanocomposite reveals three structural crystalline phases, α − SiO$_2$, LiNbO$_3$ and a mixed phase which involves the α-SiO$_2$ phase of host membrane and LiNbO$_3$ nanocrystals embedded into the membrane. The finite size of the LiNbO$_3$ nanocrystals results in specific features of the LO-TO phonon frequency splitting, which are investigated by Raman microscopy. In the transmission geometry, the second harmonic generation emission exhibits no Maker fringes and is characterized by a broad angular diagram of diffusely scattered light. The second harmonic generation response is independent of the polarization direction of the incident pump light, thus indicating a spatial isotropy of the nonlinear optical conversion in the pSiO$_2$:LiNbO$_3$ composite, consistent with the randomly oriented textural morphology of the deposited LiNbO$_3$ nanocrystals. The contribution of the guest LiNbO$_3$ nanocrystals to the second harmonic generation effect was found to be strongly dominant compared to the partially crystallized host pSiO$_2$ matrix. The nanocomposite pSiO$_2$:LiNbO$_3$ membrane, set in the 90◦ nonlinearoptical geometry, shows unusually high diffusely transmitted second harmonic generation light (back-reflected emission), apparently supported by internal light reflection from the tubular nanochannel network. Despite the fundamental interest, the revealed anomalous back-reflected second harmonic generation emission from pSiO$_2$:LiNbO$_3$ nanocomposite membranes expands the prospects for their photonic and nonlinear optical applications.   
000616201 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000616201 536__ $$0G:(GEPRIS)318019437$$aSFB 986 B07 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen (B07) (318019437)$$c318019437$$x1
000616201 542__ $$2Crossref$$i2024-10-16$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000616201 542__ $$2Crossref$$i2024-10-16$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000616201 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000616201 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000616201 7001_ $$aKarout, Houda El$$b1
000616201 7001_ $$aSahraoui, Bouchta$$b2
000616201 7001_ $$aAndrushchak, Anatoliy$$b3
000616201 7001_ $$aBeltramo, Guillermo$$b4
000616201 7001_ $$aPustovyi, Denys$$b5
000616201 7001_ $$aVitusevich, Svetlana$$b6
000616201 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b7$$udesy
000616201 7001_ $$aKityk, Andriy V.$$b8
000616201 77318 $$2Crossref$$3journal-article$$a10.1038/s41598-024-75686-6$$bSpringer Science and Business Media LLC$$d2024-10-16$$n1$$p24237$$tScientific Reports$$v14$$x2045-2322$$y2024
000616201 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-024-75686-6$$gVol. 14, no. 1, p. 24237$$n1$$p24237$$tScientific reports$$v14$$x2045-2322$$y2024
000616201 8564_ $$uhttps://bib-pubdb1.desy.de/record/616201/files/s41598-024-75686-6.pdf$$yOpenAccess
000616201 8564_ $$uhttps://bib-pubdb1.desy.de/record/616201/files/s41598-024-75686-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000616201 909CO $$ooai:bib-pubdb1.desy.de:616201$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000616201 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000616201 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b7$$kExtern
000616201 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000616201 9141_ $$y2024
000616201 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000616201 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000616201 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000616201 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000616201 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000616201 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000616201 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000616201 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
000616201 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
000616201 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-29T15:28:26Z
000616201 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000616201 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000616201 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x0
000616201 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x1
000616201 980__ $$ajournal
000616201 980__ $$aVDB
000616201 980__ $$aUNRESTRICTED
000616201 980__ $$aI:(DE-H253)CIMMS-20211022
000616201 980__ $$aI:(DE-H253)FS-PS-20131107
000616201 9801_ $$aFullTexts
000616201 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.surfcoat.2011.07.010$$uNguyen, T.-P., Polymer-based nanocomposites for organic optoelectronic devices. A review, Surf. Coat. Tech. 206 (2011) 742-752, https://doi.org/10.1016/j.surfcoat.2011.07.010
000616201 999C5 $$1AI Abdel-Salam$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2021.162946$$tJ. Alloy. Compd.$$uAbdel-Salam, A. I., Awad, M. M., Soliman, T. S. & Khalid, A. The effect of graphene on structure and optical properties of CdSe nanoparticles for optoelectronic application. J. Alloy. Compd. 898, 162946. https://doi.org/10.1016/j.jallcom.2021.162946 (2022).$$v898$$y2022
000616201 999C5 $$1AY Yassin$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10854-022-09402-3$$p46 -$$tJ. Mater. Sci: Mater. Electron.$$uYassin, A. Y. Synthesized polymeric nanocomposites with enhanced optical and electrical properties based on gold nanoparticles for optoelectronic applications. J. Mater. Sci: Mater. Electron. 34, 46. https://doi.org/10.1007/s10854-022-09402-3 (2023).$$v34$$y2023
000616201 999C5 $$1S Sagadevan$$2Crossref$$9-- missing cx lookup --$$a10.1515/ntrev-2021-0043$$p605 -$$tNanotech. Rev.$$uSagadevan, S. et al. Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotech. Rev. 10, 605–635. https://doi.org/10.1515/ntrev-2021-0043 (2021).$$v10$$y2021
000616201 999C5 $$1Z Jin$$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201600354$$p3697 -$$tAdv. Mater.$$uJin, Z. et al. Graphdiyne:ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater. 28, 3697–3702. https://doi.org/10.1002/adma.201600354 (2016).$$v28$$y2016
000616201 999C5 $$1AV Kityk$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1NR04282C$$p18714 -$$tNanoscale$$uKityk, A. V. et al. Dynamic Kerr and Pockels electro-optics of liquid crystals in nanopores for active photonic metamaterials. Nanoscale 13, 18714–18725. https://doi.org/10.1039/D1NR04282C (2021).$$v13$$y2021
000616201 999C5 $$1K Waszkowska$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.416948$$p845 -$$tOpt. Lett.$$uWaszkowska, K. et al. Anisotropic confinement of chromophores induces second-order nonlinear optics in a nanoporous photonic metamaterial. Opt. Lett. 46, 845–848. https://doi.org/10.1364/OL.416948 (2021).$$v46$$y2021
000616201 999C5 $$1H. El Karout$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-023-37147-4$$p9943 -$$tSci. Rep.$$uKarout, H. . El. et al. Second harmonic generation on crystalline organic nanoclusters under extreme nanoconfinement in functionalized silica-benzil composites. Sci. Rep. 13, 9943. https://doi.org/10.1038/s41598-023-37147-4 (2023).$$v13$$y2023
000616201 999C5 $$1A Khalid$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2023.169639$$tJ. Alloy. Compd$$uKhalid, A., Ahmed, R. M., Taha, M. & Soliman, T. S. Fe$$_3$$O$$_4$$ nanoparticles and Fe$$_3$$O$$_4$$@SiO$$_2$$ core-shell: synthesize, structural, morphological, linear, and nonlinear optical properties. J. Alloy. Compd 947, 169639. https://doi.org/10.1016/j.jallcom.2023.169639 (2023).$$v947$$y2023
000616201 999C5 $$1K Sentker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.067801$$p06780111 -$$tPhys. Rev. Lett.$$uSentker, K. et al. Quantized Self-Assembly of Discotic Rings in Nanopores. Phys. Rev. Lett. 120, 06780111. https://doi.org/10.1103/PhysRevLett.120.067801 (2018).$$v120$$y2018
000616201 999C5 $$1K Sentker$$2Crossref$$9-- missing cx lookup --$$a10.1039/C9NR07143A$$p23304 -$$tNanoscale$$uSentker, K. et al. Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials. Nanoscale 11, 23304–23317. https://doi.org/10.1039/C9NR07143A (2019).$$v11$$y2019
000616201 999C5 $$1Y Shchur$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.commatsci.2017.06.008$$p1 -$$tMater. Sci$$uShchur, Y. & Kityk, A. V. Ordered PbHPO$$_4$$ nanowires: Crystal structure, energy bands and optical properties from first principles, computation. Mater. Sci. 138, 1–9. https://doi.org/10.1016/j.commatsci.2017.06.008 (2017).$$v138$$y2017
000616201 999C5 $$1Y Shchur$$2Crossref$$9-- missing cx lookup --$$a10.3390/nano10020396$$p1 -$$tNanomaterials$$uShchur, Y., Pavlyuk, O., Andrushchak, A. S., Vitusevich, S. & Kityk, A. V. Porous Si partially filled with water molecules - crystal structure, energy bands and optical properties from first principles. Nanomaterials 10(396), 1–17. https://doi.org/10.3390/nano10020396 (2020).$$v10$$y2020
000616201 999C5 $$1V Lehmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-5107(99)00286-X$$p11 -$$tMat. Sci. Eng. B$$uLehmann, V., Stengl, R. & Luigart, A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mat. Sci. Eng. B 69–70, 11–22. https://doi.org/10.1016/S0921-5107(99)00286-X (2000).$$v69–70$$y2000
000616201 999C5 $$1J Salonen$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.118294$$p637 -$$tAppl. Phys. Lett.$$uSalonen, J., Lehto, V.-P. & Laine, E. Thermal oxidation of free-standing porous silicon films. Appl. Phys. Lett. 70, 637–639. https://doi.org/10.1063/1.118294 (1997).$$v70$$y1997
000616201 999C5 $$1S Całus$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.86.021701$$tPhys. Rev. E$$uCałus, S., Rau, D., Huber, P. & Kityk, A. V. Influence of nanoconfinement on the nematic behavior of liquid crystals. Phys. Rev. E 86, 021701. https://doi.org/10.1103/PhysRevE.86.021701 (2012).$$v86$$y2012
000616201 999C5 $$1S Całus$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.89.062501$$tPhys. Rev. E$$uCałus, S. et al. Paranematic-to-nematic ordering of a binary mixture of rodlike liquid crystals confined in cylindrical nanochannels. Phys. Rev. E 89, 062501. https://doi.org/10.1103/PhysRevE.89.062501 (2014).$$v89$$y2014
000616201 999C5 $$1Y Shchur$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2021.159177$$tJ. Alloy. Compd.$$uShchur, Y. et al. Paraelectric KH$$_2$$PO$$_4$$ nanocrystals in monolithic mesoporous silica: Structure and lattice dynamics. J. Alloy. Compd. 868, 159177. https://doi.org/10.1016/j.jallcom.2021.159177 (2021).$$v868$$y2021
000616201 999C5 $$1Y Shchur$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.saa.2022.121157$$tSpectrochim. Acta A$$uShchur, Y. et al. On the issue of textured crystallization of Ba(NO$$_3$$)$$_2$$ in mesoporous SiO$$_2$$: Raman spectroscopy and lattice dynamics analysis. Spectrochim. Acta A 275, 121157. https://doi.org/10.1016/j.saa.2022.121157 (2022).$$v275$$y2022
000616201 999C5 $$1Y Shchur$$2Crossref$$9-- missing cx lookup --$$a10.3390/nano13131913$$p1913 -$$tNanomater$$uShchur, Y. et al. Nanoarhitectonics of inorganic-organic silica-benzil composites: Synthesis, nanocrystal morphology and micro-Raman analysis. Nanomater. 13, 1913. https://doi.org/10.3390/nano13131913 (2023).$$v13$$y2023
000616201 999C5 $$1AW Warner$$2Crossref$$9-- missing cx lookup --$$a10.1121/1.1910709$$p1223 -$$tJ. Acoust. Soc. Am.$$uWarner, A. W., Onoe, M. & Coquin, G. A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m). J. Acoust. Soc. Am. 42, 1223–1231. https://doi.org/10.1121/1.1910709 (1967).$$v42$$y1967
000616201 999C5 $$1RS Weis$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00614817$$p191 -$$tAppl. Phys. A$$uWeis, R. S. & Gaylord, T. K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203. https://doi.org/10.1007/BF00614817 (1985).$$v37$$y1985
000616201 999C5 $$1Y Cho$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.338138$$p875 -$$tJ. Appl. Phys.$$uCho, Y. & Yamanouchi, K. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. J. Appl. Phys. 61, 875–887. https://doi.org/10.1063/1.338138 (1987).$$v61$$y1987
000616201 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.51.07GA02$$uTarumi, R., Matsuhisa, T., Shibutani, Y., Low temperature elastic constants and piezoelectric coefficients of LiNbO$$_3$$ and LiTaO$$_3$$: resonant ultrasound spectroscopy measurement and lattice dynamics analysis, Jpn J Appl Phys, 51 (2012) 07GA02, https://doi.org/10.1143/JJAP.51.07GA02
000616201 999C5 $$1U Schlarb$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.15613$$p15613 -$$tPhys. Rev. B$$uSchlarb, U. & Betzler, K. Refractive Indices of Lithium Niobate as a Function of Temperature, Wavelength, and Composition: A Generalized Fit. Phys. Rev. B 48, 15613–15620. https://doi.org/10.1103/PhysRevB.48.15613 (1993).$$v48$$y1993
000616201 999C5 $$1L Moretti$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1988987$$tJ. Appl. Phys.$$uMoretti, L., Iodice, M., Della Corte, F. & Rendina, I. Temperature dependencies of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J. Appl. Phys. 98, 036101. https://doi.org/10.1063/1.1988987 (2005).$$v98$$y2005
000616201 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2971/jeos.2009.09011$$uSando, D. M., & Jaatinen, E., A method to remotely measure temperature change in a lithium niobate crystal using birefringence, J. Eur. Opt. Soc.-Rapid, 4, 09011, (2009) https://doi.org/10.2971/jeos.2009.09011
000616201 999C5 $$1A Ashkin$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1754607$$p72 -$$tAppl. Phys. Lett.$$uAshkin, A. et al. Optically-induced refractive index inhomogeneities in LiNbO$$_3$$ and LiTaO$$_3$$. Appl. Phys. Lett. 9, 72–74. https://doi.org/10.1063/1.1754607 (1966).$$v9$$y1966
000616201 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/0-387-34081-5_4$$uBuse, K., Imbrock, J., Krätzig, E., & Peithmann, K., Photorefractive Effects in LiNbO$$_3$$ and LiTaO$$_3$$. In: P. Günter, J. P. Huignard (eds) Photorefractive Materials and Their Applications 2. Springer Series in Optical Sciences, Springer, New York, vol. 114 83-126, (2007) https://doi.org/10.1007/0-387-34081-5_4
000616201 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.optlaseng.2008.08.005.$$uAndrushchak, A. S., Mytsyk, B. G., Demyanyshyn, N. M., Kaidan, M. V., Yurkevych, O. V., Solskii, I. M., Kityk, A. V., & Schranz, W., Spatial anisotropy of linear electro-optic effect in crystal materials: I. Experimental determination of electro-optic tensor in LiNbO$$_3$$ by means of interferometric technique, Opt. Lasers Eng. 47, 31-38, (2009) https://doi.org/10.1016/j.optlaseng.2008.08.005.
000616201 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.optlaseng.2008.08.007$$uAndrushchak, A. S., Mytsyk, B. G., Demyanyshyn, N. M., Kaidan, M. V., Yurkevych, Dumych, S. S., Kityk, A. V., & Schranz, W., Spatial anisotropy of linear electro-optic effect in crystal materials: II. Indicative surfaces as efficient tool for electro-optic coupling optimization in LiNbO$$_3$$, Opt. Lasers Eng. 47, 24-30, (2009) https://doi.org/10.1016/j.optlaseng.2008.08.007
000616201 999C5 $$2Crossref$$uWong, K. K. (ed), Properties of Lithium Niobate, INSPEC:IET, London (2002).
000616201 999C5 $$1AS Andrushchak$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3238507$$tJ. Appl. Phys.$$uAndrushchak, A. S. et al. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J. Appl. Phys. 106, 073510. https://doi.org/10.1063/1.3238507 (2009).$$v106$$y2009
000616201 999C5 $$1E Cantelar$$2Crossref$$9-- missing cx lookup --$$a10.1049/el:20070334$$p632 -$$tElectron. Lett.$$uCantelar, E. et al. Multi-line NIR-RGB emission in Nd:LiNbO$$_3$$ RPE optical waveguides. Electron. Lett. 43, 632–633. https://doi.org/10.1049/el:20070334 (2007).$$v43$$y2007
000616201 999C5 $$1D Djukic$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2728739$$tAppl. Phys. Lett.$$uDjukic, D. et al. Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate. Appl. Phys. Lett. 90, 171116. https://doi.org/10.1063/1.2728739 (2007).$$v90$$y2007
000616201 999C5 $$1C Wang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.25.006963$$p6963 -$$tOpt. Express$$uWang, C. et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 25, 6963–6973. https://doi.org/10.1364/OE.25.006963 (2017).$$v25$$y2017
000616201 999C5 $$1L Chang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.3.000531$$p531 -$$tOptica$$uChang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535. https://doi.org/10.1364/OPTICA.3.000531 (2016).$$v3$$y2016
000616201 999C5 $$1C Wang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-02189-6$$p2098 -$$tNat. Commun.$$uWang, C. et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8, 2098. https://doi.org/10.1038/s41467-017-02189-6 (2017).$$v8$$y2017
000616201 999C5 $$1T-H Kim$$2Crossref$$uKim, T.-H. et al. Effect of Lithium Compensation on UV-VIS and IR Absorption Spectra in LiNbO$$_3$$ Crystals. J. Kor. Phys. Soc. 41, 390–394 (2002).$$y2002
000616201 999C5 $$1K Polgar$$2Crossref$$9-- missing cx lookup --$$a10.1016/s0022-0248(96)01098-6$$p211 -$$tJournal of Crystal Growth$$uPolgar, K., Peter, A., Kovacs, L., Corradi, G. & Szaller, Z. Growth of stoichiometric LiNbO$$_3$$ single crystals by top seeded solution growth method. Journal of Crystal Growth 177, 211–216. https://doi.org/10.1016/s0022-0248(96)01098-6 (1997).$$v177$$y1997
000616201 999C5 $$1RP Hilberg$$2Crossref$$9-- missing cx lookup --$$a10.1364/AO.9.001939$$p1939 -$$tAppl. Opt.$$uHilberg, R. P. & Hook, W. R. Transient Elastooptic Effects and Q-Switching Performance in Lithium Niobate and KDP Pockels Cells. Appl. Opt. 9, 1939–1940. https://doi.org/10.1364/AO.9.001939 (1970).$$v9$$y1970
000616201 999C5 $$1H Jelinkova$$2Crossref$$9-- missing cx lookup --$$a10.1002/lapl.200310020$$p59 -$$tLaser Phys. Lett.$$uJelinkova, H. et al. LiNbO$$_3$$ Pockels cell for Q-switch of Er:YAG laser. Laser Phys. Lett. 1, 59–64. https://doi.org/10.1002/lapl.200310020 (2004).$$v1$$y2004
000616201 999C5 $$1TH Lee$$2Crossref$$9-- missing cx lookup --$$a10.1002/mop.21776$$p1897 -$$tMicrow. Opt. Techn. Lett.$$uLee, T. H., Hwang, F. T., Shay, W. T. & Lee, C. T. Electromagnetic field sensor using Mach-Zehnder waveguide modulator. Microw. Opt. Techn. Lett. 48, 1897–1899. https://doi.org/10.1002/mop.21776 (2006).$$v48$$y2006
000616201 999C5 $$1TH Lee$$2Crossref$$9-- missing cx lookup --$$a10.1002/mop.22715$$p2312 -$$tMicrow. Opt. Techn. Lett.$$uLee, T. H., Wu, P. I. & Lee, C. T. Intergraded LiNbO$$_3$$ electrooptical electromagnetic field sensor. Microw. Opt. Techn. Lett. 49, 2312–2314. https://doi.org/10.1002/mop.22715 (2007).$$v49$$y2007
000616201 999C5 $$1M Li$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-17950-7$$p4123 -$$tNat. Commun.$$uLi, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123. https://doi.org/10.1038/s41467-020-17950-7 (2020).$$v11$$y2020
000616201 999C5 $$1F Mok$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.18.000915$$p915 -$$tOpt. Lett.$$uMok, F. Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett. 18, 915–917. https://doi.org/10.1364/OL.18.000915 (1993).$$v18$$y1993
000616201 999C5 $$1G Li$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.42.000939$$p939 -$$tOpt. Lett.$$uLi, G., Chen, Y., Jiang, H. & Chen, X. Broadband sum-frequency generation using $$d_{33}$$ in periodically poled LiNbO$$_3$$ thin film in the telecommunications band. Opt. Lett. 42, 939–942. https://doi.org/10.1364/OL.42.000939 (2017).$$v42$$y2017
000616201 999C5 $$1JY Chen$$2Crossref$$9-- missing cx lookup --$$a10.1364/OSAC.2.002914$$p2914 -$$tOSA Continuum$$uChen, J. Y. et al. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Continuum 2, 2914–2924. https://doi.org/10.1364/OSAC.2.002914 (2019).$$v2$$y2019
000616201 999C5 $$1K Singh$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02790348$$p469 -$$tBull. Mater. Sci.$$uSingh, K., Saodekar, P. V. & Bhoga, S. S. Effect of stoichiometry on the thermal expansion coefficients of lithium niobate single crystals. Bull. Mater. Sci. 21, 469–474. https://doi.org/10.1007/BF02790348 (1998).$$v21$$y1998
000616201 999C5 $$1A Grigas$$2Crossref$$9-- missing cx lookup --$$a10.3762/bjnano.2.3$$p28 -$$tBeilstein J. Nanotech.$$uGrigas, A. & Kaskel, S. Synthesis of LiNbO3 nanoparticles in a mesoporous matrix. Beilstein J. Nanotech. 2, 28–33. https://doi.org/10.3762/bjnano.2.3 (2011).$$v2$$y2011
000616201 999C5 $$1S Całus$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.micromeso.2014.05.036$$p26 -$$tMicropor. Mesopor. Mat.$$uCałus, S., Kityk, A. V. & Huber, P. Molecular ordering of the discotic liquid crystal HAT6 confined in mesoporous solids. Micropor. Mesopor. Mat. 197, 26–32. https://doi.org/10.1016/j.micromeso.2014.05.036 (2014).$$v197$$y2014
000616201 999C5 $$1SC Abrahams$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108768186098567$$p61 -$$tActa Cryst. B$$uAbrahams, S. C. & Marsh, P. Defect structure dependence on composition in lithium niobate. Acta Cryst. B 42, 61–68. https://doi.org/10.1107/S0108768186098567 (1986).$$v42$$y1986
000616201 999C5 $$1AL Patterson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.56.978$$p978 -$$tPhys. Rev.$$uPatterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982. https://doi.org/10.1103/PhysRev.56.978 (1939).$$v56$$y1939
000616201 999C5 $$1S Sanna$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.224302$$tPhys. Rev. B$$uSanna, S. et al. Raman scattering efficiency in LiTaO$$_3$$ and LiNbO$$_3$$ crystals. Phys. Rev. B 91, 224302. https://doi.org/10.1103/PhysRevB.91.224302 (2015).$$v91$$y2015
000616201 999C5 $$1M Thelen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-23398-0$$p3597 -$$tNat. Com.$$uThelen, M., Bochud, N., Brinker, M., Prada, C. & Huber, P. Laser-excited elastic guided waves reveal the complex mechanics of nanoporous silicon. Nat. Com. 12, 3597. https://doi.org/10.1038/s41467-021-23398-0 (2021).$$v12$$y2021
000616201 999C5 $$1S Ichikawa$$2Crossref$$9-- missing cx lookup --$$a10.1002/jrs.966$$p135 -$$tJ. Raman Spectrosc.$$uIchikawa, S., Suda, J., Sato, T. & Suzuki, Y. Lattice dynamics and temperature dependence of the first-order Raman spectra for $$\alpha$$-SiO$$_2$$ crystals. J. Raman Spectrosc. 34, 135. https://doi.org/10.1002/jrs.966 (2003).$$v34$$y2003
000616201 999C5 $$1C Trepmann$$2Crossref$$9-- missing cx lookup --$$a10.1111/maps.13590$$p2360 -$$tMeteorit. Planet. Sci.$$uTrepmann, C. et al. Quartz and cristobalite ballen in impact melt rocks from the Ries impact structure, Germany, formed by dehydration of shock-generated amorphous phases. Meteorit. Planet. Sci. 55, 2360. https://doi.org/10.1111/maps.13590 (2020).$$v55$$y2020
000616201 999C5 $$1KJ Kingma$$2Crossref$$uKingma, K. J. & Hemley, R. J. Raman spectroscopics study of microcrystalline silica. American Mineralogist 79, 269 (1994).$$y1994