001     616039
005     20250807212150.0
024 7 _ |a 10.1103/jhc3-dtzw
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06331
|2 datacite_doi
037 _ _ |a PUBDB-2024-06331
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Ludwig, Frank
|0 P:(DE-H253)PIP1004802
|b 0
|e Corresponding author
|u desy
245 _ _ |a RF controls based on carrier suppression detection with attosecond resolution
260 _ _ |a College Park, MD
|c 2025
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754570054_3840294
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, an RF control system with attosecond resolution based on carrier suppression interferometer operating a superconductive cavity at the Cryo Module Test Bench (CMTB) is presented. This novel application of the carrier suppression detector extends conventional heterodyne methods and improves the residual jitter of the regulated RF field in the cavity by more than one order of magnitude. The cavity was operated at 1.3 GHz frequency at a gradient of 8 MV/m and with a loaded quality factor of $\rm 10^7$. An out-of-loop phase noise detection floor of $\mathscr{L}=-180~dBc/Hz$ and outstanding time resolution of 189 as within an offset frequency range from 10 Hz to 1 MHz have been achieved. The phase noise budget of sub-components such as in-loop and out-of-loop detectors, high-power drive, microphonics and the reference source are reported. The facility RF reference and its phase noise in the offset frequency range from 1 kHz to 100 kHz is identified as the key noise contributor. Furthermore, above the closed-loop system bandwidth, due to filtering of the narrow band cavity the phase jitter contribution is further reduced to approximately 116 as only. The presented research using conventional receiver techniques with carrier suppression detectors in continuous-wave (CW) operation is an important milestone towards attosecond resolution pump-probe experiments at Free Electron Lasers.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Facility (machine) XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL(machine)-20150101
|5 EXP:(DE-H253)XFEL(machine)-20150101
|x 0
700 1 _ |a Branlard, Julien
|0 P:(DE-H253)PIP1014945
|b 1
|e Corresponding author
700 1 _ |a Hoffmann, Matthias
|0 P:(DE-H253)PIP1006406
|b 2
|e Corresponding author
700 1 _ |a Mavric, Uros
|0 P:(DE-H253)PIP1015612
|b 3
|e Corresponding author
700 1 _ |a Pryschelski, Heinrich
|0 P:(DE-H253)PIP1029265
|b 4
|e Corresponding author
700 1 _ |a Springer, Louise
|0 P:(DE-H253)PIP1080617
|b 5
|e Corresponding author
700 1 _ |a Schlarb, Holger
|0 P:(DE-H253)PIP1000212
|b 6
|e Corresponding author
773 _ _ |a 10.1103/jhc3-dtzw
|g Vol. 28, no. 7, p. 072803
|0 PERI:(DE-600)2844143-6
|n 7
|p 072803
|t Physical review accelerators and beams
|v 28
|y 2025
|x 2469-9888
856 4 _ |u https://journals.aps.org/prab/abstract/10.1103/jhc3-dtzw
856 4 _ |u https://bib-pubdb1.desy.de/record/616039/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/616039/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/616039/files/jhc3-dtzw.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/616039/files/jhc3-dtzw.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:616039
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1004802
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1014945
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1006406
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1015612
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1029265
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1080617
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1000212
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV ACCEL BEAMS : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-14T15:01:02Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MSK-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21