000616027 001__ 616027 000616027 005__ 20250715170915.0 000616027 0247_ $$2doi$$a10.1073/pnas.2318386121 000616027 0247_ $$2ISSN$$a0027-8424 000616027 0247_ $$2ISSN$$a1091-6490 000616027 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06320 000616027 0247_ $$2altmetric$$aaltmetric:167925289 000616027 0247_ $$2pmid$$apmid:39264743 000616027 0247_ $$2arXiv$$aarXiv:2311.13025 000616027 0247_ $$2WOS$$aWOS:001347444400001 000616027 0247_ $$2openalex$$aopenalex:W4402478461 000616027 037__ $$aPUBDB-2024-06320 000616027 041__ $$aEnglish 000616027 082__ $$a500 000616027 088__ $$2arXiv$$aarXiv:2311.13025 000616027 1001_ $$0P:(DE-HGF)0$$aJuan, Sanchez$$b0 000616027 245__ $$aDeformation Dynamics of Nanopores upon Water Imbibition 000616027 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2024 000616027 3367_ $$2DRIVER$$aarticle 000616027 3367_ $$2DataCite$$aOutput Types/Journal article 000616027 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737466902_4125545 000616027 3367_ $$2BibTeX$$aARTICLE 000616027 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000616027 3367_ $$00$$2EndNote$$aJournal Article 000616027 520__ $$aCapillarity-driven transport in nanoporous solids is ubiquitous in nature and is of increasing importance for the functionality of modern liquid-infused engineering materials. During imbibition, highly curved menisci are driven by negative Laplace pressures of several hundred atmospheres, exerting an enormous contractile load on an increasing portion of the porous matrix. Due to the challenge of simultaneously monitoring imbibition and deformation with high spatial resolution, the resulting coupling of solid elasticity to liquid capillarity has remained largely unexplored. Here, we study water imbibition in mesoporous silica using optical imaging, gravimetry, and high-resolution dilatometry. In contrast to an expected Laplace pressure-induced contraction, we find a square-root-of-time expansion and an additional abrupt length increase when the menisci reach the top surface. The final expansion is absent when we stop the imbibition front inside the porous medium in a dynamic imbibition-evaporation equilibrium, as is typical for water transport and transpiration in plants. These peculiar deformation behaviors are validated by single-nanopore molecular dynamics simulations and described by a continuum model that highlights the importance of expansive surface stresses at the pore walls (Bangham effect) and the buildup or release of contractile Laplace pressures as nanoscale menisci collectively advance, arrest, or disappear. Our model predicts that these observations are valid not only for water imbibition in silica, but for any imbibition process in nanopores, regardless of the liquid/solid combination. This also suggests that simple deformation measurements can be used to quantify surface stresses and Laplace pressures or transport in a wide variety of natural and artificial porous media. 000616027 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 000616027 536__ $$0G:(GEPRIS)318019437$$aSFB 986 B07 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen (B07) (318019437)$$c318019437$$x1 000616027 536__ $$0G:(DE-HGF)2019_IVF-HIDSS-0002$$aHIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)$$c2019_IVF-HIDSS-0002$$x2 000616027 542__ $$2Crossref$$i2024-09-12$$uhttps://creativecommons.org/licenses/by/4.0/ 000616027 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000616027 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000616027 7001_ $$0P:(DE-H253)PIP1016491$$aDammann, Lars$$b1 000616027 7001_ $$0P:(DE-H253)PIP1096427$$aGallardo Dominguez, Laura$$b2 000616027 7001_ $$0P:(DE-H253)PIP1095928$$aLi, Zhuoqing$$b3 000616027 7001_ $$0P:(DE-H253)PIP1008969$$aFroeba, Michael$$b4 000616027 7001_ $$0P:(DE-H253)PIP1093118$$aMeissner, Robert$$b5 000616027 7001_ $$0P:(DE-HGF)0$$aStone, Howard$$b6 000616027 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b7$$eCorresponding author 000616027 77318 $$2Crossref$$3journal-article$$a10.1073/pnas.2318386121$$bProceedings of the National Academy of Sciences$$d2024-09-12$$n38$$tProceedings of the National Academy of Sciences$$v121$$x0027-8424$$y2024 000616027 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2318386121$$gVol. 121, no. 38, p. e2318386121$$n38$$pe2318386121$$tProceedings of the National Academy of Sciences of the United States of America$$v121$$x0027-8424$$y2024 000616027 7870_ $$0PUBDB-2023-07691$$aJuan, Sanchez et.al.$$d2024$$iIsParent$$rarXiv:2311.13025$$tDeformation Dynamics of Nanopores upon Water Imbibition 000616027 8564_ $$uhttps://bib-pubdb1.desy.de/record/616027/files/sanchez-et-al-2024-deformation-dynamics-of-nanopores-upon-water-imbibition.pdf$$yOpenAccess 000616027 8564_ $$uhttps://bib-pubdb1.desy.de/record/616027/files/sanchez-et-al-2024-deformation-dynamics-of-nanopores-upon-water-imbibition.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000616027 909CO $$ooai:bib-pubdb1.desy.de:616027$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000616027 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1016491$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000616027 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1016491$$aCentre for Free-Electron Laser Science$$b1$$kCFEL 000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016491$$aExternal Institute$$b1$$kExtern 000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096427$$aExternal Institute$$b2$$kExtern 000616027 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095928$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000616027 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1095928$$aCentre for Free-Electron Laser Science$$b3$$kCFEL 000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008969$$aExternal Institute$$b4$$kExtern 000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093118$$aExternal Institute$$b5$$kExtern 000616027 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b7$$kExtern 000616027 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 000616027 9141_ $$y2024 000616027 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26 000616027 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26 000616027 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26 000616027 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000616027 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000616027 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger 000616027 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10 000616027 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10 000616027 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x0 000616027 980__ $$ajournal 000616027 980__ $$aVDB 000616027 980__ $$aI:(DE-H253)CIMMS-20211022 000616027 980__ $$aUNRESTRICTED 000616027 9801_ $$aFullTexts 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3598 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0250-8 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.202105923 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C9NR07143A 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.234502 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41563-022-01229-x 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2297 000616027 999C5 $$1Zhang J.$$2Crossref$$uJ. Zhang, B. Chen, X. Chen, X. Hou, Liquid-Based Adaptive Structural Materials. Adv. Mater. 2005664, 33 (2021).$$y2021 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10447 000616027 999C5 $$1Meehan F. T.$$2Crossref$$uF. T. Meehan, The expansion of charcoal on sorption of carbon dioxide. Proc. R. Soc. Lond. Ser. A Containing Pap. Math. Phys. Character 115, 199–207 (1927).$$y1927 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/122681b0 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1151-2916.1986.tb07448.x 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3213564 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la1019247 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la502974w 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/zpch-2014-0542 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/109/56002 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4975001 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.9b00859 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2978-1 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-023-06144-y 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2320763121 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4923240 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C6CP00051G 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4923240 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/jfm.2011.173 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c3sm50861g 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.0c04941 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.1c02427 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4902509 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aao7051 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3068194 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.461583 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.12657 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0001-8686(98)00042-6 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.micromeso.2017.08.009 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.79.067301 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1119352109 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.colsurfa.2015.09.055 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.71.1216 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/v52-121 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5119338 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/23/18/184109 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.7b02000 000616027 999C5 $$1Maillet B.$$2Crossref$$uB. Maillet, G. Dittrich, P. Huber, P. Coussot, Diffusionlike drying of a nanoporous solid as revealed by magnetic resonance imaging. Phys. Rev. Appl. 10, 1 (2022).$$y2022 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2831007 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature07226 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C5LC01115A 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/admi.202100660 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/v52-121 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2009.08.008 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la1019247 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-0-387-21656-0 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/v56-190 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2021.07.121 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200801489 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp507364h 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.054501 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2021.108171 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la500285m 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2799196 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssb.201100786 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2121687 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.467468 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.328693 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/39/19/S18 000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.134103 000616027 999C5 $$2Crossref$$uJ. Sanchez Calzado Deformation dynamics of nanopores upon water imbibition: Optical gravimetric and dilatometry experiments. TORE. https://doi.org/10.15480/882.13233. Deposited 21 August 2024. 000616027 999C5 $$2Crossref$$uL. Dammann Deformation dynamics of nanopores upon water imbibition: Molecular dynamics simulations. TORE. https://doi.org/10.15480/882.13223. Deposited 21 August 2024.