000616027 001__ 616027
000616027 005__ 20250715170915.0
000616027 0247_ $$2doi$$a10.1073/pnas.2318386121
000616027 0247_ $$2ISSN$$a0027-8424
000616027 0247_ $$2ISSN$$a1091-6490
000616027 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06320
000616027 0247_ $$2altmetric$$aaltmetric:167925289
000616027 0247_ $$2pmid$$apmid:39264743
000616027 0247_ $$2arXiv$$aarXiv:2311.13025
000616027 0247_ $$2WOS$$aWOS:001347444400001
000616027 0247_ $$2openalex$$aopenalex:W4402478461
000616027 037__ $$aPUBDB-2024-06320
000616027 041__ $$aEnglish
000616027 082__ $$a500
000616027 088__ $$2arXiv$$aarXiv:2311.13025
000616027 1001_ $$0P:(DE-HGF)0$$aJuan, Sanchez$$b0
000616027 245__ $$aDeformation Dynamics of Nanopores upon Water Imbibition
000616027 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2024
000616027 3367_ $$2DRIVER$$aarticle
000616027 3367_ $$2DataCite$$aOutput Types/Journal article
000616027 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737466902_4125545
000616027 3367_ $$2BibTeX$$aARTICLE
000616027 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000616027 3367_ $$00$$2EndNote$$aJournal Article
000616027 520__ $$aCapillarity-driven transport in nanoporous solids is ubiquitous in nature and is of increasing importance for the functionality of modern liquid-infused engineering materials. During imbibition, highly curved menisci are driven by negative Laplace pressures of several hundred atmospheres, exerting an enormous contractile load on an increasing portion of the porous matrix. Due to the challenge of simultaneously monitoring imbibition and deformation with high spatial resolution, the resulting coupling of solid elasticity to liquid capillarity has remained largely unexplored. Here, we study water imbibition in mesoporous silica using optical imaging, gravimetry, and high-resolution dilatometry. In contrast to an expected Laplace pressure-induced contraction, we find a square-root-of-time expansion and an additional abrupt length increase when the menisci reach the top surface. The final expansion is absent when we stop the imbibition front inside the porous medium in a dynamic imbibition-evaporation equilibrium, as is typical for water transport and transpiration in plants. These peculiar deformation behaviors are validated by single-nanopore molecular dynamics simulations and described by a continuum model that highlights the importance of expansive surface stresses at the pore walls (Bangham effect) and the buildup or release of contractile Laplace pressures as nanoscale menisci collectively advance, arrest, or disappear. Our model predicts that these observations are valid not only for water imbibition in silica, but for any imbibition process in nanopores, regardless of the liquid/solid combination. This also suggests that simple deformation measurements can be used to quantify surface stresses and Laplace pressures or transport in a wide variety of natural and artificial porous media.
000616027 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000616027 536__ $$0G:(GEPRIS)318019437$$aSFB 986 B07 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen (B07) (318019437)$$c318019437$$x1
000616027 536__ $$0G:(DE-HGF)2019_IVF-HIDSS-0002$$aHIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)$$c2019_IVF-HIDSS-0002$$x2
000616027 542__ $$2Crossref$$i2024-09-12$$uhttps://creativecommons.org/licenses/by/4.0/
000616027 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000616027 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000616027 7001_ $$0P:(DE-H253)PIP1016491$$aDammann, Lars$$b1
000616027 7001_ $$0P:(DE-H253)PIP1096427$$aGallardo Dominguez, Laura$$b2
000616027 7001_ $$0P:(DE-H253)PIP1095928$$aLi, Zhuoqing$$b3
000616027 7001_ $$0P:(DE-H253)PIP1008969$$aFroeba, Michael$$b4
000616027 7001_ $$0P:(DE-H253)PIP1093118$$aMeissner, Robert$$b5
000616027 7001_ $$0P:(DE-HGF)0$$aStone, Howard$$b6
000616027 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b7$$eCorresponding author
000616027 77318 $$2Crossref$$3journal-article$$a10.1073/pnas.2318386121$$bProceedings of the National Academy of Sciences$$d2024-09-12$$n38$$tProceedings of the National Academy of Sciences$$v121$$x0027-8424$$y2024
000616027 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2318386121$$gVol. 121, no. 38, p. e2318386121$$n38$$pe2318386121$$tProceedings of the National Academy of Sciences of the United States of America$$v121$$x0027-8424$$y2024
000616027 7870_ $$0PUBDB-2023-07691$$aJuan, Sanchez et.al.$$d2024$$iIsParent$$rarXiv:2311.13025$$tDeformation Dynamics of Nanopores upon Water Imbibition
000616027 8564_ $$uhttps://bib-pubdb1.desy.de/record/616027/files/sanchez-et-al-2024-deformation-dynamics-of-nanopores-upon-water-imbibition.pdf$$yOpenAccess
000616027 8564_ $$uhttps://bib-pubdb1.desy.de/record/616027/files/sanchez-et-al-2024-deformation-dynamics-of-nanopores-upon-water-imbibition.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000616027 909CO $$ooai:bib-pubdb1.desy.de:616027$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000616027 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1016491$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000616027 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1016491$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016491$$aExternal Institute$$b1$$kExtern
000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096427$$aExternal Institute$$b2$$kExtern
000616027 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095928$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000616027 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1095928$$aCentre for Free-Electron Laser Science$$b3$$kCFEL
000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008969$$aExternal Institute$$b4$$kExtern
000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093118$$aExternal Institute$$b5$$kExtern
000616027 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000616027 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b7$$kExtern
000616027 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000616027 9141_ $$y2024
000616027 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000616027 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000616027 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000616027 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000616027 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000616027 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
000616027 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000616027 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000616027 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x0
000616027 980__ $$ajournal
000616027 980__ $$aVDB
000616027 980__ $$aI:(DE-H253)CIMMS-20211022
000616027 980__ $$aUNRESTRICTED
000616027 9801_ $$aFullTexts
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3598
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0250-8
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.202105923
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C9NR07143A
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.234502
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41563-022-01229-x
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2297
000616027 999C5 $$1Zhang J.$$2Crossref$$uJ. Zhang, B. Chen, X. Chen, X. Hou, Liquid-Based Adaptive Structural Materials. Adv. Mater. 2005664, 33 (2021).$$y2021
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10447
000616027 999C5 $$1Meehan F. T.$$2Crossref$$uF. T. Meehan, The expansion of charcoal on sorption of carbon dioxide. Proc. R. Soc. Lond. Ser. A Containing Pap. Math. Phys. Character 115, 199–207 (1927).$$y1927
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/122681b0
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1151-2916.1986.tb07448.x
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3213564
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la1019247
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la502974w
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/zpch-2014-0542
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/109/56002
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4975001
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.9b00859
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2978-1
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-023-06144-y
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2320763121
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4923240
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C6CP00051G
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4923240
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/jfm.2011.173
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c3sm50861g
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.0c04941
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.1c02427
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4902509
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aao7051
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3068194
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.461583
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.12657
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0001-8686(98)00042-6
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.micromeso.2017.08.009
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.79.067301
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1119352109
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.colsurfa.2015.09.055
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.71.1216
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/v52-121
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5119338
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/23/18/184109
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.7b02000
000616027 999C5 $$1Maillet B.$$2Crossref$$uB. Maillet, G. Dittrich, P. Huber, P. Coussot, Diffusionlike drying of a nanoporous solid as revealed by magnetic resonance imaging. Phys. Rev. Appl. 10, 1 (2022).$$y2022
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2831007
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature07226
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C5LC01115A
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/admi.202100660
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/v52-121
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2009.08.008
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la1019247
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-0-387-21656-0
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/v56-190
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2021.07.121
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200801489
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp507364h
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.054501
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2021.108171
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la500285m
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2799196
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssb.201100786
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2121687
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.467468
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.328693
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/39/19/S18
000616027 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.134103
000616027 999C5 $$2Crossref$$uJ. Sanchez Calzado Deformation dynamics of nanopores upon water imbibition: Optical gravimetric and dilatometry experiments. TORE. https://doi.org/10.15480/882.13233. Deposited 21 August 2024.
000616027 999C5 $$2Crossref$$uL. Dammann Deformation dynamics of nanopores upon water imbibition: Molecular dynamics simulations. TORE. https://doi.org/10.15480/882.13223. Deposited 21 August 2024.