001     616014
005     20250804171709.0
024 7 _ |a 10.1038/s41598-024-75459-1
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06309
|2 datacite_doi
024 7 _ |a altmetric:165584547
|2 altmetric
024 7 _ |a 39516212
|2 pmid
024 7 _ |a WOS:001378238200008
|2 WOS
024 7 _ |a openalex:W4404187249
|2 openalex
037 _ _ |a PUBDB-2024-06309
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Wagner, Rene
|b 0
245 _ _ |a Circular dichroism in multiphoton ionization of resonantly excited helium ions near channel closing
260 _ _ |a London
|c 2024
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741947203_1954602
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Prof. Alexei N. Grum-Grzhimailo (Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia) has been part of the overall project agenda of the paper by Wagner et al. since 2014 and the data in this publication has been acquired in 2019. Prof. Grum-Grzhimailo provided calculations for the underlying FERMI proposal in 2018 and has since then not been further involved in the project. Since his contribution has concluded before the war started, we ask for permission to publish the paper with Prof. Alexei N. Grum-Grzhimailo as Co-author under the given affiliation.
520 _ _ |a The circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses usingmultiphoton ionization of excited He+ ions in the 3p (m = +1) state is investigated. The ions wereprepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulsesco- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD isobserved as a result of intensity- and polarization-dependent Freeman resonances, with and withoutadditional dichroic AC-Stark shifts. The experimental results are compared with numerical solutionsof the time-dependent Schrödinger equation to identify and interpret the pronounced variation of theexperimentally observed CD.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 1
542 _ _ |i 2024-11-08
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-11-08
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Ilchen, Markus
|0 P:(DE-H253)PIP1007017
|b 1
|u desy
700 1 _ |a Douguet, Nicolas
|b 2
700 1 _ |a Schmidt, Philipp
|b 3
700 1 _ |a Wieland, Niclas
|0 P:(DE-H253)PIP1100817
|b 4
700 1 _ |a Callegari, Carlo
|b 5
700 1 _ |a Delk, Zachary
|b 6
700 1 _ |a Demidovich, Alexander
|b 7
700 1 _ |a Ninno, Giovanni De
|b 8
700 1 _ |a Fraia, Michele Di
|b 9
700 1 _ |a Hofbrucker, Jiri
|b 10
700 1 _ |a Manfredda, Michele
|b 11
700 1 _ |a Music, Valerija
|0 P:(DE-H253)PIP1026929
|b 12
700 1 _ |a Plekan, Oksana
|b 13
700 1 _ |a Prince, Kevin
|b 14
700 1 _ |a Rivas, Daniel
|b 15
700 1 _ |a Zangrando, Marco
|b 16
700 1 _ |a Grum-Grzhimailo, Alexei
|b 17
700 1 _ |a Bartschat, Klaus
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Meyer, Michael
|0 P:(DE-H253)PIP1093505
|b 19
|e Corresponding author
770 _ _ |a Free Electron Lasers
773 1 8 |a 10.1038/s41598-024-75459-1
|b Springer Science and Business Media LLC
|d 2024-11-08
|n 1
|p 27232
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-024-75459-1
|0 PERI:(DE-600)2615211-3
|n 1
|p 27232
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |u https://www.nature.com/articles/s41598-024-75459-1
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/Internal%20Review%20Erk%20%28FLASH%29.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/Article%20Approval%20Service.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/Internal%20Review%20Erk%20%28FLASH%29.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/s41598-024-75459-1.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/616014/files/s41598-024-75459-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:616014
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1007017
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1007017
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1007017
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 4
|6 P:(DE-H253)PIP1100817
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1100817
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1100817
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1026929
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1026929
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 19
|6 P:(DE-H253)PIP1093505
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1093505
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)XFEL-User-20170713
|k XFEL-User
|l The European XFEL Users
|x 0
920 1 _ |0 I:(DE-H253)CFEL-XAC-20240710
|k CFEL-XAC
|l X-ray Atto-Chirality
|x 1
920 1 _ |0 I:(DE-H253)FS-FLASH-D-20160930
|k FS-FLASH-D
|l FLASH Photonen-Diagnose und Steuerungen
|x 2
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 3
920 1 _ |0 I:(DE-H253)XFEL_E2_SQS-20210408
|k XFEL_E2_SQS
|l SQS
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)XFEL-User-20170713
980 _ _ |a I:(DE-H253)CFEL-XAC-20240710
980 _ _ |a I:(DE-H253)FS-FLASH-D-20160930
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)XFEL_E2_SQS-20210408
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1088/0953-4075/34/11/101
|9 -- missing cx lookup --
|1 S Baier
|p 3363 -
|2 Crossref
|u Baier, S., Grum-Grzhimailo, A. & Kabachnik, N. Angular distribution of photoelectrons in resonant photoionization of polarized atoms. J. Phys. B At. Mol. Opt. Phys. 27, 3363. https://doi.org/10.1088/0953-4075/34/11/101 (1994).
|t J. Phys. B At. Mol. Opt. Phys.
|v 27
|y 1994
999 C 5 |a 10.1103/PhysRevLett.94.223002
|1 S Aloïse
|9 -- missing cx lookup --
|2 Crossref
|u Aloïse, S., O’Keeffe, P., Cubaynes, D., Meyer, M. & Grum-Grzhimailo, A. Photoionization of synchrotron-radiation-excited atoms: Separating partial cross sections by full polarization control. Phys. Rev. Lett. 94, 223002. https://doi.org/10.1103/PhysRevLett.94.223002 (2005).
|t Phys. Rev. Lett.
|v 94
|y 2005
999 C 5 |a 10.1002/cphc.201100035
|9 -- missing cx lookup --
|1 C Logé
|p 1940 -
|2 Crossref
|u Logé, C. & Boesl, U. Multiphoton ionization and circular dichroism: new experimental approach and application to natural products. Chem.Phys.Chem. 12, 1940. https://doi.org/10.1002/cphc.201100035 (2011).
|t Chem.Phys.Chem.
|v 12
|y 2011
999 C 5 |a 10.1038/s41567-018-0080-5
|9 -- missing cx lookup --
|1 S Eckart
|p 701 -
|2 Crossref
|u Eckart, S. et al. Ultrafast preparation and detection of ring currents in single atoms. Nat. Phys. 14, 701. https://doi.org/10.1038/s41567-018-0080-5 (2018).
|t Nat. Phys.
|v 14
|y 2018
999 C 5 |a 10.1103/PhysRevLett.126.023201
|1 A De Silva
|9 -- missing cx lookup --
|2 Crossref
|u De Silva, A. et al. Using circular dichroism to control energy transfer in multiphoton ionization. Phys. Rev. Lett. 126, 023201. https://doi.org/10.1103/PhysRevLett.126.023201 (2021).
|t Phys. Rev. Lett.
|v 126
|y 2021
999 C 5 |a 10.1088/1367-2630/17/4/043054/meta
|1 E Gryzlova
|9 -- missing cx lookup --
|2 Crossref
|u Gryzlova, E. et al. Isotope effects in resonant two-color photoionization of Xe in the region of the 5p5(2P1/2)4f[5/2]2 autoionizing state. New J. Phys. 17, 043054. https://doi.org/10.1088/1367-2630/17/4/043054/meta (2015).
|t New J. Phys.
|v 17
|y 2015
999 C 5 |a 10.1103/PhysRevA.14.359
|9 -- missing cx lookup --
|1 B Ritchie
|p 359 -
|2 Crossref
|u Ritchie, B. Theory of the angular distribution for ejection of photoelectrons from optically active molecules and molecular negative ions, II. Phys. Rev. A 14, 359. https://doi.org/10.1103/PhysRevA.14.359 (1976).
|t Phys. Rev. A
|v 14
|y 1976
999 C 5 |a 10.1103/PhysRevLett.86.1187
|9 -- missing cx lookup --
|1 N Böwering
|p 1187 -
|2 Crossref
|u Böwering, N. et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86, 1187. https://doi.org/10.1103/PhysRevLett.86.1187 (2001).
|t Phys. Rev. Lett.
|v 86
|y 2001
999 C 5 |a 10.1016/j.elspec.2015.04.008
|9 -- missing cx lookup --
|1 L Nahon
|p 322 -
|2 Crossref
|u Nahon, L., Garcia, G. A. & Powis, I. Valence shell one-photon photoelectron circular dichroism in chiral systems. J. Electron Spectrosc. Relat. Phenomena 204, 322 (2015).
|t J. Electron Spectrosc. Relat. Phenomena
|v 204
|y 2015
999 C 5 |a 10.1038/s41567-017-0038-z
|9 -- missing cx lookup --
|1 S Beaulieu
|p 484 -
|2 Crossref
|u Beaulieu, S. et al. Photoexcitation circular dichroism in chiral molecules. Nat. Phys. 14, 484 (2018).
|t Nat. Phys.
|v 14
|y 2018
999 C 5 |a 10.1038/s42004-021-00555-6
|9 -- missing cx lookup --
|1 M Ilchen
|p 119 -
|2 Crossref
|u Ilchen, M. et al. Site-specific interrogation of an ionic chiral fragment during photolysis using an X-ray free-electron laser. Commun. Chem. 4, 119 (2021).
|t Commun. Chem.
|v 4
|y 2021
999 C 5 |a 10.1063/1.5121620
|1 K Veyrinas
|9 -- missing cx lookup --
|2 Crossref
|u Veyrinas, K. et al. Dissociative photoionization of no across a shape resonance in the XUV range using circularly polarized synchrotron radiation. J. Chem. Phys. 151, 174305 (2019).
|t J. Chem. Phys.
|v 151
|y 2019
999 C 5 |a 10.1016/j.ccr.2014.03.018
|9 -- missing cx lookup --
|1 G van der Laan
|p 95 -
|2 Crossref
|u van der Laan, G. & Figueroa, A. I. X-ray magnetic circular dichroism—a versatile tool to study magnetism. Coord. Chem. Rev. 277, 95 (2014).
|t Coord. Chem. Rev.
|v 277
|y 2014
999 C 5 |a 10.1103/PhysRevA.84.063415
|1 I Barth
|9 -- missing cx lookup --
|2 Crossref
|u Barth, I. & Smirnova, O. Nonadiabatic tunneling in circularly polarized laser fields: Physical picture and calculations. Phys. Rev. A 84, 063415. https://doi.org/10.1103/PhysRevA.84.063415 (2011).
|t Phys. Rev. A
|v 84
|y 2011
999 C 5 |a 10.1038/ncomms4648
|9 -- missing cx lookup --
|1 T Mazza
|p 1 -
|2 Crossref
|u Mazza, T. et al. Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism. Nat. Commun. 5, 1. https://doi.org/10.1038/ncomms4648 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |a 10.1103/PhysRevLett.107.253002
|1 A Kazansky
|9 -- missing cx lookup --
|2 Crossref
|u Kazansky, A., Grigorieva, A. & Kabachnik, N. Circular dichroism in laser-assisted short-pulse photoionization. Phys. Rev. Lett. 107, 253002. https://doi.org/10.1103/PhysRevLett.107.253002 (2011).
|t Phys. Rev. Lett.
|v 107
|y 2011
999 C 5 |a 10.1103/PhysRevLett.118.013002
|1 M Ilchen
|9 -- missing cx lookup --
|2 Crossref
|u Ilchen, M. et al. Circular dichroism in multiphoton ionization of resonantly excited He$$^{+}$$ ions. Phys. Rev. Lett. 118, 013002. https://doi.org/10.1103/PhysRevLett.118.013002 (2017).
|t Phys. Rev. Lett.
|v 118
|y 2017
999 C 5 |a 10.1063/1.4961470
|1 G Hartmann
|9 -- missing cx lookup --
|2 Crossref
|u Hartmann, G. et al. Circular dichroism measurements at an X-ray free-electron laser with polarization control. Rev. Sci. Instrum. 87, 083113 (2016).
|t Rev. Sci. Instrum.
|v 87
|y 2016
999 C 5 |a 10.1080/09500340.2015.1119897
|9 -- missing cx lookup --
|1 T Mazza
|p 367 -
|2 Crossref
|u Mazza, T. et al. Angular distribution and circular dichroism in the two-colour XUV + NIR above-threshold ionization of helium. J. Mod. Opt. 63, 367. https://doi.org/10.1080/09500340.2015.1119897 (2016).
|t J. Mod. Opt.
|v 63
|y 2016
999 C 5 |a 10.1038/s41467-023-41505-1
|9 -- missing cx lookup --
|1 A Rörig
|p 5738 -
|2 Crossref
|u Rörig, A. et al. Multiple-core-hole resonance spectroscopy with ultraintense X-ray pulses. Nat. Commun. 14, 5738 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1088/0953-4075/24/2/004
|9 -- missing cx lookup --
|1 R Freeman
|p 325 -
|2 Crossref
|u Freeman, R. & Bucksbaum, P. Investigations of above-threshold ionization using subpicosecond laser pulses. J. Phys. B: At. Mol. Opt. Phys. 24, 325. https://doi.org/10.1088/0953-4075/24/2/004 (1991).
|t J. Phys. B: At. Mol. Opt. Phys.
|v 24
|y 1991
999 C 5 |a 10.1088/0953-4075/43/18/185001
|1 T Marchenko
|9 -- missing cx lookup --
|2 Crossref
|u Marchenko, T., Muller, H., Schafer, K. & Vrakking, M. Wavelength dependence of photoelectron spectra in above-threshold ionization. J. Phys. B: At. Mol. Opt. Phys. 43, 185001. https://doi.org/10.1088/0953-4075/43/18/185001 (2010).
|t J. Phys. B: At. Mol. Opt. Phys.
|v 43
|y 2010
999 C 5 |a 10.1103/PhysRevX.4.041040
|1 E Allaria
|9 -- missing cx lookup --
|2 Crossref
|u Allaria, E. et al. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X 4, 041040. https://doi.org/10.1103/PhysRevX.4.041040 (2014).
|t Phys. Rev. X
|v 4
|y 2014
999 C 5 |a 10.1103/PhysRevA.90.063402
|1 JH Bauer
|9 -- missing cx lookup --
|2 Crossref
|u Bauer, J. H., Mota-Furtado, F., O’Mahony, P. F., Piraux, B. & Warda, K. Ionization and excitation of the excited hydrogen atom in strong circularly polarized laser fields. Phys. Rev. A 90, 063402. https://doi.org/10.1103/PhysRevA.90.063402 (2014).
|t Phys. Rev. A
|v 90
|y 2014
999 C 5 |a 10.1088/0953-4075/46/16/164007
|1 V Lyamayev
|9 -- missing cx lookup --
|2 Crossref
|u Lyamayev, V. et al. A modular end-station for atomic, molecular, and cluster science at the Low-Density-Matter beamline of FERMI@Elettra. J. Phys. B: At. Mol. Opt. Phys. 46, 164007. https://doi.org/10.1088/0953-4075/46/16/164007 (2013).
|t J. Phys. B: At. Mol. Opt. Phys.
|v 46
|y 2013
999 C 5 |a 10.1038/nphoton.2012.233
|9 -- missing cx lookup --
|1 E Allaria
|p 699 -
|2 Crossref
|u Allaria, E. et al. Highly coherent and stable pulses from the fermi seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699. https://doi.org/10.1038/nphoton.2012.233 (2012).
|t Nat. Photonics
|v 6
|y 2012
999 C 5 |2 Crossref
|u Kramida, A. E., Ralchenko, Y. & J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, (version 5.10). https://www.nist.gov/pml/atomic-spectra-database (2022).
999 C 5 |a 10.1016/0375-9601(71)90132-0
|9 -- missing cx lookup --
|1 M Baumann
|p 173 -
|2 Crossref
|u Baumann, M. & Eibofner, A. Lifetime of the 3p state of ionized helium. Phys. Lett. A 35, 173. https://doi.org/10.1016/0375-9601(71)90132-0 (1971).
|t Phys. Lett. A
|v 35
|y 1971
999 C 5 |2 Crossref
|u Bethe, H. & Salpeter, E. Quantum Mechanics of One- and Two-Electron Atoms (Springer, 2013). https://books.google.de/books?id=nxz2CAAAQBAJ.
999 C 5 |9 -- missing cx lookup --
|a 10.3390/atoms12070034
|2 Crossref
|u Douguet, N., Guchkov, M., Bartschat, K. & Santos, S. F. d. Efficient time-dependent method for strong-field ionization of atoms with smoothly varying radial steps. Atoms 12, 89. https://doi.org/10.3390/atoms12070034 (2024)
999 C 5 |a 10.1088/0953-4075/29/9/013
|9 -- missing cx lookup --
|1 E Cormier
|p 1667 -
|2 Crossref
|u Cormier, E. & Lambropoulos, P. Optimal gauge and gauge invariance in non-perturbative time-dependent calculation of above-threshold ionization. J. Phys. B: At. Mol. Opt. Phys. 29, 1667. https://doi.org/10.1088/0953-4075/29/9/013 (1996).
|t J. Phys. B: At. Mol. Opt. Phys.
|v 29
|y 1996
999 C 5 |a 10.1103/PhysRevA.81.043408
|1 AN Grum-Grzhimailo
|9 -- missing cx lookup --
|2 Crossref
|u Grum-Grzhimailo, A. N., Abeln, B., Bartschat, K., Weflen, D. & Urness, T. Ionization of atomic hydrogen in strong infrared laser fields. Phys. Rev. A 81, 043408. https://doi.org/10.1103/PhysRevA.81.043408 (2010).
|t Phys. Rev. A
|v 81
|y 2010
999 C 5 |a 10.1103/PhysRevA.90.043401
|1 IA Ivanov
|9 -- missing cx lookup --
|2 Crossref
|u Ivanov, I. A. et al. Displacement effect in strong-field atomic ionization by an XUV pulse. Phys. Rev. A 90, 043401. https://doi.org/10.1103/PhysRevA.90.043401 (2014).
|t Phys. Rev. A
|v 90
|y 2014
999 C 5 |a 10.1103/PhysRevA.100.033404
|1 AN Grum-Grzhimailo
|9 -- missing cx lookup --
|2 Crossref
|u Grum-Grzhimailo, A. N., Douguet, N., Meyer, M. & Bartschat, K. Two-color XUV plus near-IR multiphoton near-threshold ionization of the helium ion by circularly polarized light in the vicinity of the 3p resonance. Phys. Rev. A 100, 033404. https://doi.org/10.1103/PhysRevA.100.033404 (2019).
|t Phys. Rev. A
|v 100
|y 2019
999 C 5 |a 10.1103/PhysRevA.103.053125
|1 AHNC De Silva
|9 -- missing cx lookup --
|2 Crossref
|u De Silva, A. H. N. C. et al. Circular dichroism in atomic resonance-enhanced few-photon ionization. Phys. Rev. A 103, 053125. https://doi.org/10.1103/PhysRevA.103.053125 (2021).
|t Phys. Rev. A
|v 103
|y 2021
999 C 5 |a 10.1103/PhysRevLett.59.1092
|9 -- missing cx lookup --
|1 RR Freeman
|p 1092 -
|2 Crossref
|u Freeman, R. R. et al. Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 1092. https://doi.org/10.1103/PhysRevLett.59.1092 (1987).
|t Phys. Rev. Lett.
|v 59
|y 1987
999 C 5 |a 10.1103/PhysRevLett.126.053202
|1 A Hartung
|9 -- missing cx lookup --
|2 Crossref
|u Hartung, A. et al. Electric nondipole effect in strong-field ionization. Phys. Rev. Lett. 126, 053202. https://doi.org/10.1103/PhysRevLett.126.053202 (2021).
|t Phys. Rev. Lett.
|v 126
|y 2021
999 C 5 |a 10.1103/PhysRevLett.128.023201
|1 K Lin
|9 -- missing cx lookup --
|2 Crossref
|u Lin, K. et al. Magnetic-field effect in high-order above-threshold ionization. Phys. Rev. Lett. 128, 023201. https://doi.org/10.1103/PhysRevLett.128.023201 (2022).
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1103/PhysRevA.101.053417
|1 S Wang
|9 -- missing cx lookup --
|2 Crossref
|u Wang, S., Jiang, W.-C., Tian, X.-Q. & Sun, H.-B. Conjoint influence of quantum interference and freeman resonance on substructures of the photoelectron spectra in above-threshold ionization. Phys. Rev. A 101, 053417. https://doi.org/10.1103/PhysRevA.101.053417 (2020).
|t Phys. Rev. A
|v 101
|y 2020


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21