001     615111
005     20241113213956.0
024 7 _ |a Iteanu:2024dvx
|2 INSPIRETeX
024 7 _ |a inspire:2837340
|2 inspire
024 7 _ |a arXiv:2410.03542
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2024-06039
|2 datacite_doi
037 _ _ |a PUBDB-2024-06039
041 _ _ |a English
088 _ _ |a DESY-24-141
|2 DESY
088 _ _ |a arXiv:2410.03542
|2 arXiv
100 1 _ |a Iteanu, Simon
|b 0
245 _ _ |a Vanishing of Quadratic Love Numbers of Schwarzschild Black Holes
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1731504614_2146061
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 55 pages, 3 figures
520 _ _ |a The induced conservative tidal response of self-gravitating objects in general relativity is parametrized in terms of a set of coefficients, which are commonly referred to as Love numbers. For asymptotically-flat black holes in four spacetime dimensions, the Love numbers are notoriously zero in the static regime. In this work, we show that this result continues to hold upon inclusion of nonlinearities in the theory for Schwarzschild black holes. We first solve the quadratic Einstein equations in the static limit to all orders in the multipolar expansion, including both even and odd perturbations. We show that the second-order solutions take simple analytic expressions, generically expressible in the form of finite polynomials. We then define the quadratic Love numbers at the level of the point-particle effective field theory. By performing the matching with the full solution in general relativity, we show that quadratic Love number coefficients are zero to all orders in the derivative expansion, like the linear ones.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 1
536 _ _ |a LHCtoLISA - Precision Gravity: From the LHC to LISA (817791)
|0 G:(EU-Grant)817791
|c 817791
|f ERC-2018-COG
|x 2
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Riva, Massimiliano Maria
|0 P:(DE-H253)PIP1103490
|b 1
|e Corresponding author
|u desy
700 1 _ |a Santoni, Luca
|b 2
700 1 _ |a Savić, Nikola
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vernizzi, Filippo
|b 4
856 4 _ |u https://bib-pubdb1.desy.de/record/615111/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/615111/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/615111/files/2410.03542v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/615111/files/2410.03542v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:615111
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1103490
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)T-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21