000614989 001__ 614989 000614989 005__ 20241215110647.0 000614989 0247_ $$2arXiv$$aarXiv:2306.13066 000614989 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06033 000614989 037__ $$aPUBDB-2024-06033 000614989 041__ $$aEnglish 000614989 088__ $$2arXiv$$aarXiv:2306.13066 000614989 088__ $$2DESY$$aDESY-24-168 000614989 088__ $$2Other$$aHU-EP-23/20 000614989 088__ $$2Other$$aHU-Mathematik-2023-1 000614989 1001_ $$aKlabbers, Rob$$b0 000614989 245__ $$aThe deformed Inozemtsev spin chain 000614989 260__ $$c2024 000614989 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1731504835_1909732 000614989 3367_ $$2ORCID$$aWORKING_PAPER 000614989 3367_ $$028$$2EndNote$$aElectronic Article 000614989 3367_ $$2DRIVER$$apreprint 000614989 3367_ $$2BibTeX$$aARTICLE 000614989 3367_ $$2DataCite$$aOutput Types/Working Paper 000614989 500__ $$a25 pages, 2 figures 000614989 520__ $$aThe Inozemtsev chain is an exactly solvable interpolation between the short-range Heisenberg and long-range Haldane-Shastry (HS) chains. In order to unlock its potential to study spin interactions with tunable interaction range using the powerful tools of integrability, the model's mathematical properties require better understanding. As a major step in this direction, we present a new generalisation of the Inozemtsev chain with spin symmetry reduced to U(1), interpolating between a Heisenberg xxz chain and the xxz-type HS chain, and integrable throughout. Underlying it is a new quantum many-body system that extends the elliptic Ruijsenaars system by including spins, contains the trigonometric spin-Ruijsenaars-Macdonald system as a special case, and yields our spin chain by 'freezing'. Our models have potential applications from condensed-matter to high-energy theory, and provide a crucial step towards a general theory for long-range integrability. 000614989 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0 000614989 536__ $$0G:(EU-Grant)101044226$$aBrokenSymmetries - Exact Results from Broken Symmetries (101044226)$$c101044226$$fERC-2021-COG$$x1 000614989 588__ $$aDataset connected to DataCite 000614989 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000614989 7001_ $$0P:(DE-H253)PIP1028527$$aLamers, Jules$$b1$$eCorresponding author$$udesy 000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/HTML-Approval_of_scientific_publication.html 000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/PDF-Approval_of_scientific_publication.pdf 000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/2306.13066v5.pdf$$yOpenAccess 000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/2306.13066v5.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000614989 909CO $$ooai:bib-pubdb1.desy.de:614989$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000614989 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1028527$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000614989 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0 000614989 9141_ $$y2024 000614989 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000614989 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished 000614989 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000614989 980__ $$apreprint 000614989 980__ $$aVDB 000614989 980__ $$aUNRESTRICTED 000614989 980__ $$aI:(DE-H253)T-20120731 000614989 9801_ $$aFullTexts