000614989 001__ 614989
000614989 005__ 20241215110647.0
000614989 0247_ $$2arXiv$$aarXiv:2306.13066
000614989 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06033
000614989 037__ $$aPUBDB-2024-06033
000614989 041__ $$aEnglish
000614989 088__ $$2arXiv$$aarXiv:2306.13066
000614989 088__ $$2DESY$$aDESY-24-168
000614989 088__ $$2Other$$aHU-EP-23/20
000614989 088__ $$2Other$$aHU-Mathematik-2023-1
000614989 1001_ $$aKlabbers, Rob$$b0
000614989 245__ $$aThe deformed Inozemtsev spin chain
000614989 260__ $$c2024
000614989 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1731504835_1909732
000614989 3367_ $$2ORCID$$aWORKING_PAPER
000614989 3367_ $$028$$2EndNote$$aElectronic Article
000614989 3367_ $$2DRIVER$$apreprint
000614989 3367_ $$2BibTeX$$aARTICLE
000614989 3367_ $$2DataCite$$aOutput Types/Working Paper
000614989 500__ $$a25 pages, 2 figures
000614989 520__ $$aThe Inozemtsev chain is an exactly solvable interpolation between the short-range Heisenberg and long-range Haldane-Shastry (HS) chains. In order to unlock its potential to study spin interactions with tunable interaction range using the powerful tools of integrability, the model's mathematical properties require better understanding. As a major step in this direction, we present a new generalisation of the Inozemtsev chain with spin symmetry reduced to U(1), interpolating between a Heisenberg xxz chain and the xxz-type HS chain, and integrable throughout. Underlying it is a new quantum many-body system that extends the elliptic Ruijsenaars system by including spins, contains the trigonometric spin-Ruijsenaars-Macdonald system as a special case, and yields our spin chain by 'freezing'. Our models have potential applications from condensed-matter to high-energy theory, and provide a crucial step towards a general theory for long-range integrability.
000614989 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000614989 536__ $$0G:(EU-Grant)101044226$$aBrokenSymmetries - Exact Results from Broken Symmetries (101044226)$$c101044226$$fERC-2021-COG$$x1
000614989 588__ $$aDataset connected to DataCite
000614989 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000614989 7001_ $$0P:(DE-H253)PIP1028527$$aLamers, Jules$$b1$$eCorresponding author$$udesy
000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/HTML-Approval_of_scientific_publication.html
000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/PDF-Approval_of_scientific_publication.pdf
000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/2306.13066v5.pdf$$yOpenAccess
000614989 8564_ $$uhttps://bib-pubdb1.desy.de/record/614989/files/2306.13066v5.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000614989 909CO $$ooai:bib-pubdb1.desy.de:614989$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000614989 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1028527$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000614989 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000614989 9141_ $$y2024
000614989 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000614989 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000614989 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000614989 980__ $$apreprint
000614989 980__ $$aVDB
000614989 980__ $$aUNRESTRICTED
000614989 980__ $$aI:(DE-H253)T-20120731
000614989 9801_ $$aFullTexts