Home > Publications database > Development of a flat jet delivery system for soft X-ray spectroscopy at MAX IV > print |
001 | 614809 | ||
005 | 20250808105105.0 | ||
024 | 7 | _ | |a 10.1107/S1600577524006611 |2 doi |
024 | 7 | _ | |a 0909-0495 |2 ISSN |
024 | 7 | _ | |a 1600-5775 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-06027 |2 datacite_doi |
024 | 7 | _ | |a altmetric:166586321 |2 altmetric |
024 | 7 | _ | |a pmid:39172090 |2 pmid |
024 | 7 | _ | |a WOS:001362324700033 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4401731377 |
037 | _ | _ | |a PUBDB-2024-06027 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Gallo, Tamires |b 0 |
245 | _ | _ | |a Development of a flat jet delivery system for soft X-ray spectroscopy at MAX IV |
260 | _ | _ | |a [Erscheinungsort nicht ermittelbar] |c 2024 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1727855514_2434253 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a One of the most challenging aspects of X-ray research is the delivery of liquidsample flows into the soft X-ray beam. Currently, cylindrical microjets are themost commonly used sample injection systems for soft X-ray liquid spectro-scopy. However, they suffer from several drawbacks, such as complicatedgeometry due to their curved surface. In this study, we propose a novel 3D-printed nozzle design by introducing microscopic flat sheet jets that providemicrometre-thick liquid sheets with high stability, intending to make this tech-nology more widely available to users. Our research is a collaboration betweenthe EuXFEL and MAX IV research facilities. This collaboration aims todevelop and refine a 3D-printed flat sheet nozzle design and a versatile jettingplatform that is compatible with multiple endstations and measurement tech-niques. Our flat sheet jet platform improves the stability of the jet and increasesits surface area, enabling more precise scanning and differential measurementsin X-ray absorption, scattering, and imaging applications. Here, we demonstratethe performance of this new arrangement for a flat sheet jet setup with X-rayphotoelectron spectroscopy, photoelectron angular distribution, and soft X-rayabsorption spectroscopy experiments performed at the photoemission end-station of the FlexPES beamline at MAX IV Laboratory in Lund, Sweden |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G13 - Accelerator of European XFEL (POF4-6G13) |0 G:(DE-HGF)POF4-6G13 |c POF4-6G13 |f POF IV |x 1 |
542 | _ | _ | |i 2024-08-22 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/legalcode |
542 | _ | _ | |i 2024-08-22 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/legalcode |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a XFEL |e Experiments at XFEL |1 EXP:(DE-H253)XFEL-20150101 |0 EXP:(DE-H253)XFEL-Exp-20150101 |5 EXP:(DE-H253)XFEL-Exp-20150101 |x 0 |
700 | 1 | _ | |a Adriano, Luigi |b 1 |
700 | 1 | _ | |a Heymann, Michael |b 2 |
700 | 1 | _ | |a Wrona, Agnieszka |b 3 |
700 | 1 | _ | |a Walsh, Noelle |b 4 |
700 | 1 | _ | |a Öhrwall, Gunnar |b 5 |
700 | 1 | _ | |a Callefo, Flavia |0 0000-0003-3707-8250 |b 6 |
700 | 1 | _ | |a Skruszewicz, Slawomir |0 P:(DE-H253)PIP1010480 |b 7 |
700 | 1 | _ | |a Namboodiri, Mahesh |b 8 |
700 | 1 | _ | |a Marinho, Ricardo |b 9 |
700 | 1 | _ | |a Schulz, Joachim |b 10 |
700 | 1 | _ | |a Ripado Valerio, Joana |0 P:(DE-H253)PIP1010569 |b 11 |e Corresponding author |
773 | 1 | 8 | |a 10.1107/s1600577524006611 |b International Union of Crystallography (IUCr) |d 2024-08-22 |n 5 |p 1285-1292 |3 journal-article |2 Crossref |t Journal of Synchrotron Radiation |v 31 |y 2024 |x 1600-5775 |
773 | _ | _ | |a 10.1107/S1600577524006611 |g Vol. 31, no. 5, p. 1285 - 1292 |0 PERI:(DE-600)2021413-3 |n 5 |p 1285-1292 |t Journal of synchrotron radiation |v 31 |y 2024 |x 1600-5775 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/614809/files/Journal%20of%20Synchrotron%20Radiation%20-%202024%20-%20Gallo%20-%20Development%20of%20a%20flat%20jet%20delivery%20system%20for%20soft%20X%E2%80%90ray%20spectroscopy%20at.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/614809/files/Journal%20of%20Synchrotron%20Radiation%20-%202024%20-%20Gallo%20-%20Development%20of%20a%20flat%20jet%20delivery%20system%20for%20soft%20X%E2%80%90ray%20spectroscopy%20at.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:614809 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1010480 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1010480 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1010569 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 11 |6 P:(DE-H253)PIP1010569 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1010569 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G13 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator of European XFEL |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-03-08T13:56:53Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-03-08T13:56:53Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-06 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J SYNCHROTRON RADIAT : 2022 |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-03-08T13:56:53Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-06 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-06 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_E2_SEC-20210408 |k XFEL_E2_SEC |l Sample Environment and Characterisation |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PS-20131107 |k FS-PS |l FS-Photon Science |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)XFEL_E2_SEC-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-PS-20131107 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.3389/fmolb.2022.1044610 |9 -- missing cx lookup -- |1 Barnard |p 1044610 - |2 Crossref |t Front. Mol. Biosci. |v 9 |y 2022 |
999 | C | 5 | |a 10.1021/jz300510r |9 -- missing cx lookup -- |1 Brown |p 1754 - |2 Crossref |t J. Phys. Chem. Lett. |v 3 |y 2012 |
999 | C | 5 | |a 10.1063/4.0000188 |9 -- missing cx lookup -- |1 Buttersack |p 034901 - |2 Crossref |t Struct. Dyn. |v 10 |y 2023 |
999 | C | 5 | |a 10.1039/D2CP04077H |9 -- missing cx lookup -- |1 Carter-Fenk |p 26170 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 24 |y 2022 |
999 | C | 5 | |a 10.1063/4.0000139 |9 -- missing cx lookup -- |1 Chang |p 014901 - |2 Crossref |t Struct. Dyn. |v 9 |y 2022 |
999 | C | 5 | |a 10.1107/S1600577524001875 |9 -- missing cx lookup -- |1 De Angelis |p 605 - |2 Crossref |t J. Synchrotron Rad. |v 31 |y 2024 |
999 | C | 5 | |a 10.1039/D1CP05621B |9 -- missing cx lookup -- |1 Dupuy |p 4796 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 24 |y 2022 |
999 | C | 5 | |a 10.1063/5.0036178 |9 -- missing cx lookup -- |1 Dupuy |p 060901 - |2 Crossref |t J. Chem. Phys. |v 154 |y 2021 |
999 | C | 5 | |a 10.1021/acs.jpcb.8b05424 |9 -- missing cx lookup -- |1 Ekimova |p 7737 - |2 Crossref |t J. Phys. Chem. B |v 122 |y 2018 |
999 | C | 5 | |a 10.1063/1.4928715 |9 -- missing cx lookup -- |1 Ekimova |p 054301 - |2 Crossref |t Struct. Dyn. |v 5 |y 2015 |
999 | C | 5 | |a 10.1021/jacs.7b07207 |9 -- missing cx lookup -- |1 Ekimova |p 12773 - |2 Crossref |t J. Am. Chem. Soc. |v 139 |y 2017 |
999 | C | 5 | |a 10.1063/1.4993755 |9 -- missing cx lookup -- |1 Fondell |p 054902 - |2 Crossref |t Struct. Dyn. |v 106 |y 2017 |
999 | C | 5 | |a 10.1021/acs.jpclett.0c00968 |9 -- missing cx lookup -- |1 Gozem |p 5162 - |2 Crossref |t J. Phys. Chem. Lett. |v 11 |y 2020 |
999 | C | 5 | |a 10.1006/adnd.1993.1013 |9 -- missing cx lookup -- |1 Henke |p 181 - |2 Crossref |t At. Data Nucl. Data Tables |v 54 |y 1993 |
999 | C | 5 | |a 10.3389/fmolb.2022.1048932 |9 -- missing cx lookup -- |1 Hoffman |p 1048932 - |2 Crossref |t Front. Mol. Biosci. |v 9 |y 2022 |
999 | C | 5 | |a 10.1021/acs.jpclett.8b03420 |9 -- missing cx lookup -- |1 Kleine |p 52 - |2 Crossref |t J. Phys. Chem. Lett. |v 10 |y 2019 |
999 | C | 5 | |a 10.1038/s41467-020-14434-6 |9 -- missing cx lookup -- |1 Knoška |p 657 - |2 Crossref |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1107/S2052252523007972 |9 -- missing cx lookup -- |1 Konold |p 662 - |2 Crossref |t IUCrJ |v 10 |y 2023 |
999 | C | 5 | |a 10.1038/s41467-018-03696-w |9 -- missing cx lookup -- |1 Koralek |p 1353 - |2 Crossref |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1021/je1002175 |9 -- missing cx lookup -- |1 Marcus |p 3641 - |2 Crossref |t J. Chem. Eng. Data |v 55 |y 2010 |
999 | C | 5 | |a 10.1021/acs.jpcb.7b02382 |9 -- missing cx lookup -- |1 Marinho |p 7916 - |2 Crossref |t J. Phys. Chem. B |v 121 |y 2017 |
999 | C | 5 | |a 10.1364/OL.22.000132 |9 -- missing cx lookup -- |1 Maruo |p 132 - |2 Crossref |t Opt. Lett. |v 22 |y 1997 |
999 | C | 5 | |a 10.1063/5.0007228 |9 -- missing cx lookup -- |1 Menzi |p 105109 - |2 Crossref |t Rev. Sci. Instrum. |v 91 |y 2020 |
999 | C | 5 | |a 10.1063/1.4979857 |9 -- missing cx lookup -- |1 Nishitani |p 044014 - |2 Crossref |t Struct. Dyn. |v 4 |y 2017 |
999 | C | 5 | |a 10.1016/j.elspec.2009.08.007 |9 -- missing cx lookup -- |1 Ottosson |p 60 - |2 Crossref |t J. Electron Spectrosc. Relat. Phenom. |v 177 |y 2010 |
999 | C | 5 | |a 10.1039/c1cp20245f |9 -- missing cx lookup -- |1 Ottosson |p 12261 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 13 |y 2011 |
999 | C | 5 | |a 10.1107/S1600577523003429 |9 -- missing cx lookup -- |1 Preobrajenski |p 831 - |2 Crossref |t J. Synchrotron Rad. |v 30 |y 2023 |
999 | C | 5 | |a 10.1098/rspl.1879.0015 |9 -- missing cx lookup -- |1 Rayleigh |p 71 - |2 Crossref |t Proc. R. Soc. London |v 29 |y 1879 |
999 | C | 5 | |a 10.1107/S1600577519000894 |9 -- missing cx lookup -- |1 Schulz |p 339 - |2 Crossref |t J. Synchrotron Rad. |v 26 |y 2019 |
999 | C | 5 | |a 10.1063/1.4928867 |9 -- missing cx lookup -- |1 Smith |p 084503 - |2 Crossref |t J. Chem. Phys. |v 143 |y 2015 |
999 | C | 5 | |a 10.1063/1.4953921 |9 -- missing cx lookup -- |1 Steinke |p 063905 - |2 Crossref |t Rev. Sci. Instrum. |v 87 |y 2016 |
999 | C | 5 | |a 10.1098/rspa.1960.0207 |9 -- missing cx lookup -- |1 Taylor |p 1 - |2 Crossref |t Proc. R. Soc. London A |v 259 |y 1960 |
999 | C | 5 | |a 10.1103/PhysRevLett.111.173005 |9 -- missing cx lookup -- |1 Thürmer |p 173005 - |2 Crossref |t Phys. Rev. Lett. |v 111 |y 2013 |
999 | C | 5 | |a 10.1107/S1600577521013370 |9 -- missing cx lookup -- |1 Vakili |p 331 - |2 Crossref |t J. Synchrotron Rad. |v 29 |y 2022 |
999 | C | 5 | |a 10.1021/je00019a016 |9 -- missing cx lookup -- |1 Vazquez |p 611 - |2 Crossref |t J. Chem. Eng. Data |v 40 |y 1995 |
999 | C | 5 | |a 10.1098/rstb.2013.0337 |9 -- missing cx lookup -- |1 Weierstall |p 20130337 - |2 Crossref |t Phil. Trans. R. Soc. B |v 369 |y 2014 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|