001     614727
005     20250804171656.0
024 7 _ |a 10.1002/adma.202310668
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-05947
|2 datacite_doi
024 7 _ |a altmetric:166020563
|2 altmetric
024 7 _ |a pmid:39101291
|2 pmid
024 7 _ |a WOS:001283369300001
|2 WOS
024 7 _ |a openalex:W4401339407
|2 openalex
037 _ _ |a PUBDB-2024-05947
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Asmara, Teguh Citra
|0 P:(DE-H253)PIP1015899
|b 0
|e Corresponding author
|u desy
245 _ _ |a Emergence of Interfacial Magnetism in Strongly‐Correlated Nickelate‐Titanate Superlattices
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745406837_3662842
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Strongly-correlated transition-metal oxides are widely known for their variousexotic phenomena. This is exemplified by rare-earth nickelates such asLaNiO3 , which possess intimate interconnections between their electronic,spin, and lattice degrees of freedom. Their properties can be further enhancedby pairing them in hybrid heterostructures, which can lead to hidden phasesand emergent phenomena. An important example is the LaNiO$_3$ /LaTiO$_3$ superlattice, where an interlayer electron transfer has been observed fromLaTiO$_3$ into LaNiO$_3$ leading to a high-spin state. However, macroscopicemergence of magnetic order associated with this high-spin state has so farnot been observed. Here, by using muon spin rotation, x-ray absorption, andresonant inelastic x-ray scattering, direct evidence of an emergentantiferromagnetic order with high magnon energy and exchange interactionsat the LaNiO3 /LaTiO$_3$ interface is presented. As the magnetism is purelyinterfacial, a single LaNiO$_3$/LaTiO$_3$ interface can essentially behave as anatomically thin strongly-correlated quasi-2D antiferromagnet, potentiallyallowing its technological utilization in advanced spintronic devices.Furthermore, its strong quasi-2D magnetic correlations, orbitally-polarizedplanar ligand holes, and layered superlattice design make its electronic,magnetic, and lattice configurations resemble the precursor states ofsuperconducting cuprates and nickelates, but with an S→1 spin state instead.
536 _ _ |a 6G13 - Accelerator of European XFEL (POF4-6G13)
|0 G:(DE-HGF)POF4-6G13
|c POF4-6G13
|f POF IV
|x 0
542 _ _ |i 2024-08-05
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Experiments at XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-Exp-20150101
|5 EXP:(DE-H253)XFEL-Exp-20150101
|x 0
700 1 _ |a Green, Robert J.
|b 1
700 1 _ |a Suter, Andreas
|b 2
700 1 _ |a Wei, Yuan
|b 3
700 1 _ |a Zhang, Wenliang
|b 4
700 1 _ |a Knez, Daniel
|b 5
700 1 _ |a Harris, Grant
|b 6
700 1 _ |a Tseng, Yi
|b 7
700 1 _ |a Yu, Tianlun
|b 8
700 1 _ |a Betto, Davide
|b 9
700 1 _ |a Garcia-Fernandez, Mirian
|b 10
700 1 _ |a Agrestini, Stefano
|b 11
700 1 _ |a Klein, Yannick Maximilian
|b 12
700 1 _ |a Kumar, Neeraj
|b 13
700 1 _ |a Galdino, Carlos William
|b 14
700 1 _ |a Salman, Zaher
|b 15
700 1 _ |a Prokscha, Thomas
|b 16
700 1 _ |a Medarde, Marisa
|b 17
700 1 _ |a Müller, Elisabeth
|b 18
700 1 _ |a Soh, Yona
|b 19
700 1 _ |a Brookes, Nicholas B.
|b 20
700 1 _ |a Zhou, Ke-Jin
|b 21
700 1 _ |a Radovic, Milan
|b 22
700 1 _ |a Schmitt, Thorsten
|b 23
773 1 8 |a 10.1002/adma.202310668
|b Wiley
|d 2024-08-05
|n 38
|3 journal-article
|2 Crossref
|t Advanced Materials
|v 36
|y 2024
|x 0935-9648
773 _ _ |a 10.1002/adma.202310668
|g p. 2310668
|0 PERI:(DE-600)1474949-X
|n 38
|p 10668
|t Advanced materials
|v 36
|y 2024
|x 0935-9648
856 4 _ |u https://bib-pubdb1.desy.de/record/614727/files/Advanced%20Materials%20-%202024%20-%20Asmara%20-%20Emergence%20of%20Interfacial%20Magnetism%20in%20Strongly%E2%80%90Correlated%20Nickelate%E2%80%90Titanate.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/614727/files/Advanced%20Materials%20-%202024%20-%20Asmara%20-%20Emergence%20of%20Interfacial%20Magnetism%20in%20Strongly%E2%80%90Correlated%20Nickelate%E2%80%90Titanate.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:614727
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1015899
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1015899
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G13
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator of European XFEL
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV MATER : 2022
|d 2024-12-13
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-H253)XFEL_E2_SCS-20210408
|k XFEL_E2_SCS
|l SCS
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)XFEL_E2_SCS-20210408
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nmat3223
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/RevModPhys.89.025006
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.280.5366.1064
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nmat1931
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1202647
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nmat3224
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nphys3627
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/advs.202101516
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature19820
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/RevModPhys.78.17
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/RevModPhys.84.1383
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41586-019-1496-5
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41586-023-06408-7
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.45.8209
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.110.126404
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.112.106404
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/ncomms13017
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.94.195127
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1088/1361-6633/aaa37a
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.50.978
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-017-02561-6
|2 Crossref
999 C 5 |1 Lu Y.
|y 2018
|2 Crossref
|o Lu Y. 2018
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.106.246403
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-020-15143-w
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.114.026801
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/ncomms10418
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.117.147401
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.94.056401
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.95.197402
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.111.116403
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/adma.201900065
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.100.016404
|2 Crossref
999 C 5 |2 Crossref
|u H.LaBollita V.Pardo M. R.Norman A. S.Botana arXiv:2309.17279 [cond‐mat.str‐el].
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41586-022-05657-2
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1080/001075199181521
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/RevModPhys.83.705
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jcrysgro.2007.12.006
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.nima.2008.07.081
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1063/1.2372731
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1107/S0909049510019862
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.85.165113
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1088/1742-6596/712/1/012001
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.126.187602
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.55.418
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.65.155101
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nphys2041
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.92.104507
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevLett.118.156402
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-022-30918-z
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.nima.2018.07.001
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1107/S1600577522000601
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.93.214513
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.abd7726
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.74.220508
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nphys1426
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nnano.2016.18
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/RevModPhys.90.015005
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0168-583X(01)01166-1
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.phpro.2012.04.042
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1107/S0909049505012719
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevB.64.081102
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/jemt.20597
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21