TY - EJOUR AU - Ferrando, Gwenaël AU - Lamers, Jules AU - Levkovich-Maslyuk, Fedor AU - Serban, Didina TI - Bethe ansatz inside Calogero-Sutherland models IS - arXiv:2308.16865 M1 - PUBDB-2024-05936 M1 - arXiv:2308.16865 M1 - DESY-24-142 PY - 2024 N1 - 42 pages, 3 figures AB - We study the trigonometric quantum spin-Calogero-Sutherland model, and the Haldane-Shastry spin chain as a special case, using a Bethe-ansatz analysis. We harness the model's Yangian symmetry to import the standard tools of integrability for Heisenberg spin chains into the world of integrable long-range models with spins. From the transfer matrix with a diagonal twist we construct Heisenberg-style symmetries (Bethe algebra) that refine the usual hierarchy of commuting Hamiltonians (quantum determinant) of the spin-Calogero-Sutherland model. We compute the first few of these new conserved charges explicitly, and diagonalise them by Bethe ansatz inside each irreducible Yangian representation. This yields a new eigenbasis for the spin-Calogero-Sutherland model that generalises the Yangian Gelfand-Tsetlin basis of Takemura and Uglov. The Bethe-ansatz analysis involves non-generic values of the inhomogeneities. Our review of the inhomogeneous Heisenberg XXX chain, with special attention to how the Bethe ansatz works in the presence of fusion, may be of independent interest. KW - spin: chain (INSPIRE) KW - symmetry: Yangian (INSPIRE) KW - charge: conservation law (INSPIRE) KW - Bethe ansatz (INSPIRE) KW - integrability (INSPIRE) KW - algebra (INSPIRE) KW - transfer matrix (INSPIRE) KW - twist (INSPIRE) KW - fusion (INSPIRE) KW - Calogero-Sutherland model (INSPIRE) LB - PUB:(DE-HGF)25 DO - DOI:10.3204/PUBDB-2024-05936 UR - https://bib-pubdb1.desy.de/record/614716 ER -