000614406 001__ 614406
000614406 005__ 20250625124212.0
000614406 0247_ $$2doi$$a10.1681/ASN.2019040414
000614406 0247_ $$2ISSN$$a1046-6673
000614406 0247_ $$2ISSN$$a1533-3450
000614406 0247_ $$2altmetric$$aaltmetric:70469660
000614406 0247_ $$2pmid$$apmid:31732614
000614406 0247_ $$2WOS$$aWOS:000508269600010
000614406 037__ $$aPUBDB-2024-05873
000614406 041__ $$aEnglish
000614406 082__ $$a610
000614406 1001_ $$aKampf, Lina L.$$b0
000614406 245__ $$aTBC1D8B Mutations Implicate RAB11-Dependent Vesicular Trafficking in the Pathogenesis of Nephrotic Syndrome
000614406 260__ $$a[Erscheinungsort nicht ermittelbar]$$bOvid$$c2019
000614406 3367_ $$2DRIVER$$aarticle
000614406 3367_ $$2DataCite$$aOutput Types/Journal article
000614406 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729000365_1708574
000614406 3367_ $$2BibTeX$$aARTICLE
000614406 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000614406 3367_ $$00$$2EndNote$$aJournal Article
000614406 500__ $$aThis research was supported by grants from the Deutsche Forschungsgemeinschaft to Dr. Hermle (HE 7456/3-1) . Dr. Bergmann acknowledges support from the Deutsche Forschungsgemeinschaft Collaborative Research Centre (KIDGEM 1140) and the Federal Ministry of Education and Research (01GM1515C).
000614406 520__ $$aAbstractSignificance Statement The discovery of monogenic causes of nephrotic syndrome led to insights about the role of podocytes and the slit diaphragm in the pathogenesis of the disease. The authors describe novel mutations in TBC1D8B in five families with steroid-resistant nephrotic syndrome. TBC1D8B binds to active RAB11A and RAB11B. Silencing TBC1D8B leads to upregulation of RAB11-dependent processes suggesting TBC1D8B inhibits RAB11. TBC1D8B also interacts and colocalizes with the slit diaphragm protein nephrin. Silencing TBC1D8B in podocyte-like Drosophila nephrocytes causes mistrafficking of fly nephrin. Nephrin trafficking in Drosophila requires Rab11, whereas overexpression of Rab11 causes a similar phenotype as TBC1D8B silencing. These findings implicate regulation of RAB11-dependent vesicular trafficking by TBC1D8B as a novel pathogenetic pathway in nephrotic syndrome.Background Mutations in about 50 genes have been identified as monogenic causes of nephrotic syndrome, a frequent cause of CKD. These genes delineated the pathogenetic pathways and rendered significant insight into podocyte biology.Methods We used whole-exome sequencing to identify novel monogenic causes of steroid-resistant nephrotic syndrome (SRNS). We analyzed the functional significance of an SRNS-associated gene in vitro and in podocyte-like Drosophila nephrocytes.Results We identified hemizygous missense mutations in the gene TBC1D8B in five families with nephrotic syndrome. Coimmunoprecipitation assays indicated interactions between TBC1D8B and active forms of RAB11. Silencing TBC1D8B in HEK293T cells increased basal autophagy and exocytosis, two cellular functions that are independently regulated by RAB11. This suggests that TBC1D8B plays a regulatory role by inhibiting endogenous RAB11. Coimmunoprecipitation assays showed TBC1D8B also interacts with the slit diaphragm protein nephrin, and colocalizes with it in immortalized cell lines. Overexpressed murine Tbc1d8b with patient-derived mutations had lower affinity for endogenous RAB11 and nephrin compared with wild-type Tbc1d8b protein. Knockdown of Tbc1d8b in Drosophila impaired function of the podocyte-like nephrocytes, and caused mistrafficking of Sns, the Drosophila ortholog of nephrin. Expression of Rab11 RNAi in nephrocytes entailed defective delivery of slit diaphragm protein to the membrane, whereas RAB11 overexpression revealed a partial phenotypic overlap to Tbc1d8b loss of function.Conclusions Novel mutations in TBC1D8B are monogenic causes of SRNS. This gene inhibits RAB11. Our findings suggest that RAB11-dependent vesicular nephrin trafficking plays a role in the pathogenesis of nephrotic syndrome. 
000614406 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000614406 536__ $$0G:(GEPRIS)39236281$$aDFG project G:(GEPRIS)39236281 - EXC 294: BIOSS Zentrum für Biologische Signalstudien - von der Analyse zur Synthese (39236281)$$c39236281$$x1
000614406 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000614406 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000614406 7001_ $$aSchneider, Ronen$$b1
000614406 7001_ $$aGerstner, Lea$$b2
000614406 7001_ $$0P:(DE-H253)PIP1087856$$aThünauer, Roland$$b3
000614406 7001_ $$aChen, Mengmeng$$b4
000614406 7001_ $$aHelmstädter, Martin$$b5
000614406 7001_ $$aAmar, Ali$$b6
000614406 7001_ $$aOnuchic-Whitford, Ana C.$$b7
000614406 7001_ $$aLoza Munarriz, Reyner$$b8
000614406 7001_ $$aBerdeli, Afig$$b9
000614406 7001_ $$aMüller, Dominik$$b10
000614406 7001_ $$aSchrezenmeier, Eva$$b11
000614406 7001_ $$aBudde, Klemens$$b12
000614406 7001_ $$aMane, Shrikant$$b13
000614406 7001_ $$aLaricchia, Kristen M.$$b14
000614406 7001_ $$00000-0002-6025-0015$$aRehm, Heidi L.$$b15
000614406 7001_ $$aMacArthur, Daniel G.$$b16
000614406 7001_ $$aLifton, Richard P.$$b17
000614406 7001_ $$aWalz, Gerd$$b18
000614406 7001_ $$aRömer, Winfried$$b19
000614406 7001_ $$aBergmann, Carsten$$b20
000614406 7001_ $$aHildebrandt, Friedhelm$$b21
000614406 7001_ $$0P:(DE-HGF)0$$aHermle, Tobias$$b22$$eCorresponding author
000614406 773__ $$0PERI:(DE-600)2029124-3$$a10.1681/ASN.2019040414$$gVol. 30, no. 12, p. 2338 - 2353$$n12$$p2338 - 2353$$tJournal of the American Society of Nephrology$$v30$$x1046-6673$$y2019
000614406 8564_ $$uhttps://bib-pubdb1.desy.de/record/614406/files/tbc1d8b_mutations_implicate_rab11_dependent.11.pdf$$yRestricted
000614406 8564_ $$uhttps://bib-pubdb1.desy.de/record/614406/files/tbc1d8b_mutations_implicate_rab11_dependent.11.pdf?subformat=pdfa$$xpdfa$$yRestricted
000614406 909CO $$ooai:bib-pubdb1.desy.de:614406$$pVDB
000614406 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1087856$$aCentre for Structural Systems Biology$$b3$$kCSSB
000614406 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087856$$aExternal Institute$$b3$$kExtern
000614406 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000614406 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM SOC NEPHROL : 2022$$d2023-10-24
000614406 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM SOC NEPHROL : 2022$$d2023-10-24
000614406 9201_ $$0I:(DE-H253)CSSB-CF-ALFM-20210629$$kCSSB-CF-ALFM$$lCSSB-CF-ALFM$$x0
000614406 980__ $$ajournal
000614406 980__ $$aVDB
000614406 980__ $$aI:(DE-H253)CSSB-CF-ALFM-20210629
000614406 980__ $$aUNRESTRICTED