001     614277
005     20250625124245.0
024 7 _ |a 10.1038/s41467-021-24076-x
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05817
|2 datacite_doi
024 7 _ |a altmetric:108073672
|2 altmetric
024 7 _ |a pmid:34158503
|2 pmid
024 7 _ |a WOS:000669043500017
|2 WOS
037 _ _ |a PUBDB-2024-05817
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Albers, Suki
|b 0
245 _ _ |a Repurposing tRNAs for nonsense suppression
260 _ _ |a [London]
|c 2021
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729084489_2584836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This research was supported by grants from the Deutsche Forschungsgemeinschaft IG73/14-2 (to Z.I.) and WI2381/6-1 (to D.N.W.)
520 _ _ |a Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Beckert, Bertrand
|b 1
700 1 _ |a Matthies, Marco C.
|b 2
700 1 _ |a Mandava, Chandra Sekhar
|b 3
700 1 _ |a Schuster, Raphael
|b 4
700 1 _ |a Seuring, Carolin
|0 P:(DE-H253)PIP1020921
|b 5
700 1 _ |a Riedner, Maria
|b 6
700 1 _ |a Sanyal, Suparna
|0 0000-0002-7124-792X
|b 7
700 1 _ |a Torda, Andrew E.
|0 0000-0002-6076-709X
|b 8
700 1 _ |a Wilson, Daniel N.
|0 0000-0003-3816-3828
|b 9
700 1 _ |a Ignatova, Zoya
|0 0000-0002-9478-8825
|b 10
|e Corresponding author
773 _ _ |a 10.1038/s41467-021-24076-x
|g Vol. 12, no. 1, p. 3850
|0 PERI:(DE-600)2553671-0
|n 1
|p 3850
|t Nature Communications
|v 12
|y 2021
|x 2041-1723
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/614277/files/s41467-021-24076-x.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/614277/files/s41467-021-24076-x.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:614277
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 5
|6 P:(DE-H253)PIP1020921
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 5
|6 P:(DE-H253)PIP1020921
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1020921
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
920 1 _ |0 I:(DE-H253)CSSB-CF-CRYO-20210520
|k CSSB-CF-CRYO
|l CSSB-CF-CRYO
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-CF-CRYO-20210520
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21