001     614269
005     20250715171318.0
024 7 _ |a 10.1107/S1600576724002711
|2 doi
024 7 _ |a 0021-8898
|2 ISSN
024 7 _ |a 1600-5767
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-05809
|2 datacite_doi
024 7 _ |a altmetric:163793270
|2 altmetric
024 7 _ |a pmid:38846770
|2 pmid
024 7 _ |a WOS:001256619300017
|2 WOS
024 7 _ |2 openalex
|a openalex:W4398764606
037 _ _ |a PUBDB-2024-05809
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Voss, Lennart
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Synthesis and in-depth structure determination of a novel metastable high-pressure CrTe$_3$ phase
260 _ _ |a Chester, UK
|c 2024
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727860214_2435029
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Financial support by the German Research Foundation (DFG KI 1263/20-1) is acknowledged
520 _ _ |a This study reports the synthesis and crystal structure determination of a novel CrTe$_3$ phase using various experimental and theoretical methods. The average stoichiometry and local phase separation of this quenched high-pressure phase were characterized by ex situ synchrotron powder X-ray diffraction and total scattering. Several structural models were obtained using simulated annealing, but all suffered from an imperfect Rietveld refinement, especially at higher diffraction angles. Finally, a novel stoichiometrically correct crystal structure model was proposed on the basis of electron diffraction data and refined against powder diffraction data using the Rietveld method. Scanning electron microscopy–energy-dispersive X-ray spectrometry (EDX) measurements verified the targeted 1:3 (Cr:Te) average stoichiometry for the starting compound and for the quenched high-pressure phase within experimental errors. Scanning transmission electron microscopy (STEM)–EDX was used to examine minute variations of the Cr-to-Te ratio at the nanoscale. Precession electron diffraction (PED) experiments were applied for the nanoscale structure analysis of the quenched high-pressure phase. The proposed monoclinic model from PED experiments provided an improved fit to the X-ray patterns, especially after introducing atomic anisotropic displacement parameters and partial occupancy of Cr atoms. Atomic resolution STEM and simulations were conducted to identify variations in the Cr-atom site-occupancy factor. No significant variations were observed experimentally for several zone axes. The magnetic properties of the novel CrTe$_3$ phase were investigated through temperature- and field-dependent magnetization measurements. In order to understand these properties, auxiliary theoretical investigations have been performed by first-principles electronic structure calculations and Monte Carlo simulations. The obtained results allow the observed magnetization behavior to be interpreted as the consequence of competition between the applied magnetic field and the Cr–Cr exchange interactions, leading to a decrease of the magnetization towards T = 0 K typical for antiferromagnetic systems, as well as a field-induced enhanced magnetization around the critical temperature due to the high magnetic susceptibility in this region.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
542 _ _ |i 2024-05-24
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/legalcode
542 _ _ |i 2024-05-24
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/legalcode
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.1-20150101
|6 EXP:(DE-H253)P-P02.1-20150101
|x 0
700 1 _ |a Gaida, Nico Alexander
|0 P:(DE-H253)PIP1021770
|b 1
700 1 _ |a Hansen, Anna-Lena
|0 P:(DE-H253)PIP1011969
|b 2
700 1 _ |a Etter, Martin
|0 P:(DE-H253)PIP1018552
|b 3
700 1 _ |a Wolff, Niklas
|0 P:(DE-H253)PIP1096097
|b 4
700 1 _ |a Duppel, Viola
|b 5
700 1 _ |a Lotnyk, Andriy
|b 6
700 1 _ |a Bensch, Wolfgang
|0 P:(DE-H253)PIP1007359
|b 7
700 1 _ |a Ebert, Hubert
|b 8
700 1 _ |a Mankovsky, Sergey
|b 9
700 1 _ |a Polesya, Svitlana
|b 10
700 1 _ |a Bhat, Shrikant
|0 P:(DE-H253)PIP1015084
|b 11
700 1 _ |a Farla, Robert
|0 P:(DE-H253)PIP1080589
|b 12
700 1 _ |a Hasegawa, Masashi
|b 13
700 1 _ |a Sasaki, Takuya
|b 14
700 1 _ |a Niwa, Ken
|b 15
700 1 _ |a Kienle, Lorenz
|0 P:(DE-H253)PIP1015170
|b 16
|e Corresponding author
773 1 8 |a 10.1107/s1600576724002711
|b International Union of Crystallography (IUCr)
|d 2024-05-24
|n 3
|p 755-769
|3 journal-article
|2 Crossref
|t Journal of Applied Crystallography
|v 57
|y 2024
|x 1600-5767
773 _ _ |a 10.1107/S1600576724002711
|g Vol. 57, no. 3, p. 755 - 769
|0 PERI:(DE-600)2020879-0
|n 3
|p 755-769
|t Journal of applied crystallography
|v 57
|y 2024
|x 1600-5767
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/614269/files/te5131.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/614269/files/te5131.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:614269
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1021770
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1011969
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1018552
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1096097
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1007359
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1015084
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1015084
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1080589
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-H253)PIP1015170
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CRYSTALLOGR : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J APPL CRYSTALLOGR : 2022
|d 2024-12-17
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.1007/BF00560631
|9 -- missing cx lookup --
|1 Akram
|p 423 -
|2 Crossref
|t J. Mater. Sci.
|v 18
|y 1983
999 C 5 |a 10.1016/j.ultramic.2018.06.003
|9 -- missing cx lookup --
|1 Barthel
|p 1 -
|2 Crossref
|t Ultramicroscopy
|v 193
|y 2018
999 C 5 |a 10.1107/S1600577515002283
|9 -- missing cx lookup --
|1 Basham
|p 853 -
|2 Crossref
|t J. Synchrotron Rad.
|v 22
|y 2015
999 C 5 |a 10.1016/S0025-5408(96)00194-8
|9 -- missing cx lookup --
|1 Bensch
|p 305 -
|2 Crossref
|t Mater. Res. Bull.
|v 32
|y 1997
999 C 5 |a 10.1088/0953-8984/25/45/454202
|9 -- missing cx lookup --
|1 Billinge
|p 454202 -
|2 Crossref
|t J. Phys. Condens. Matter
|v 25
|y 2013
999 C 5 |2 Crossref
|u Bruker (2017). TOPAS6.0. Bruker AXS, Madison, Wisconsin, USA.
999 C 5 |a 10.1063/1.5045299
|9 -- missing cx lookup --
|1 Buchner
|p 161101 -
|2 Crossref
|t J. Appl. Phys.
|v 124
|y 2018
999 C 5 |a 10.1107/S0021889806014075
|9 -- missing cx lookup --
|1 Campbell
|p 607 -
|2 Crossref
|t J. Appl. Cryst.
|v 39
|y 2006
999 C 5 |a 10.1016/0022-4596(92)90070-C
|9 -- missing cx lookup --
|1 Canadell
|p 59 -
|2 Crossref
|t J. Solid State Chem.
|v 98
|y 1992
999 C 5 |a 10.1007/BF02647574
|9 -- missing cx lookup --
|1 Chattopadhyay
|p 431 -
|2 Crossref
|t J. Phase Equilib.
|v 15
|y 1994
999 C 5 |a 10.1107/S0365110X63001134
|9 -- missing cx lookup --
|1 Chevreton
|p 431 -
|2 Crossref
|t Acta Cryst.
|v 16
|y 1963
999 C 5 |a 10.1002/adma.202103360
|9 -- missing cx lookup --
|1 Chua
|p 2103360 -
|2 Crossref
|t Adv. Mater.
|v 33
|y 2021
999 C 5 |a 10.1107/S1600576718000183
|9 -- missing cx lookup --
|1 Coelho
|p 210 -
|2 Crossref
|t J. Appl. Cryst.
|v 51
|y 2018
999 C 5 |a 10.1107/S002188980000248X
|9 -- missing cx lookup --
|1 Coelho
|p 899 -
|2 Crossref
|t J. Appl. Cryst.
|v 33
|y 2000
999 C 5 |a 10.1088/0953-8984/1/46/008
|9 -- missing cx lookup --
|1 Dijkstra
|p 9141 -
|2 Crossref
|t J. Phys. Condens. Matter
|v 1
|y 1989
999 C 5 |a 10.1088/0034-4885/74/9/096501
|9 -- missing cx lookup --
|1 Ebert
|p 096501 -
|2 Crossref
|t Rep. Prog. Phys.
|v 74
|y 2011
999 C 5 |a 10.1103/PhysRevB.79.045209
|9 -- missing cx lookup --
|1 Ebert
|p 045209 -
|2 Crossref
|t Phys. Rev. B
|v 79
|y 2009
999 C 5 |a 10.1107/S1600576717004708
|9 -- missing cx lookup --
|1 Filik
|p 959 -
|2 Crossref
|t J. Appl. Cryst.
|v 50
|y 2017
999 C 5 |a 10.1063/1.3060808
|9 -- missing cx lookup --
|1 Garcia
|p 013925 -
|2 Crossref
|t J. Appl. Phys.
|v 105
|y 2009
999 C 5 |a 10.1107/S1600576716000455
|9 -- missing cx lookup --
|1 Hammersley
|p 646 -
|2 Crossref
|t J. Appl. Cryst.
|v 49
|y 2016
999 C 5 |a 10.1515/zkri-2017-2100
|9 -- missing cx lookup --
|1 Hansen
|p 361 -
|2 Crossref
|t Z. Kristallogr. Cryst. Mater.
|v 233
|y 2018
999 C 5 |a 10.1098/rspa.1977.0064
|9 -- missing cx lookup --
|1 Jones
|p 197 -
|2 Crossref
|t Proc. R. Soc. London A
|v 354
|y 1977
999 C 5 |a 10.1021/acs.nanolett.1c00493
|9 -- missing cx lookup --
|1 Huang
|p 4280 -
|2 Crossref
|t Nano Lett.
|v 21
|y 2021
999 C 5 |a 10.1016/j.jssc.2006.04.001
|9 -- missing cx lookup --
|1 Huang
|p 2067 -
|2 Crossref
|t J. Solid State Chem.
|v 179
|y 2006
999 C 5 |a 10.1016/j.solidstatesciences.2007.11.013
|9 -- missing cx lookup --
|1 Huang
|p 1099 -
|2 Crossref
|t Solid State Sci.
|v 10
|y 2008
999 C 5 |a 10.1016/0022-5088(83)90493-9
|9 -- missing cx lookup --
|1 Ipser
|p 265 -
|2 Crossref
|t J. Less-Common Met.
|v 92
|y 1983
999 C 5 |a 10.1016/S0925-8388(01)00927-6
|9 -- missing cx lookup --
|1 Ishizuka
|p 24 -
|2 Crossref
|t J. Alloys Compd.
|v 320
|y 2001
999 C 5 |a 10.1107/S0021889813005190
|9 -- missing cx lookup --
|1 Juhás
|p 560 -
|2 Crossref
|t J. Appl. Cryst.
|v 46
|y 2013
999 C 5 |a 10.1016/S0304-8853(97)00370-3
|9 -- missing cx lookup --
|1 Kanomata
|p 589 -
|2 Crossref
|t J. Magn. Magn. Mater.
|v 177-181
|y 1998
999 C 5 |a 10.1002/anie.198209111
|9 -- missing cx lookup --
|1 Klepp
|p 911 -
|2 Crossref
|t Angew. Chem. Int. Ed. Engl.
|v 21
|y 1982
999 C 5 |a 10.1007/BF00911937
|9 -- missing cx lookup --
|1 Klepp
|p 499 -
|2 Crossref
|t Monatsh. Chem.
|v 110
|y 1979
999 C 5 |a 10.1016/S1293-2558(02)00004-3
|9 -- missing cx lookup --
|1 Kraschinski
|p 1237 -
|2 Crossref
|t Solid State Sci.
|v 4
|y 2002
999 C 5 |a 10.1016/j.mattod.2022.04.011
|9 -- missing cx lookup --
|1 Li
|p 66 -
|2 Crossref
|t Mater. Today
|v 57
|y 2022
999 C 5 |a 10.1021/acs.inorgchem.2c01826
|9 -- missing cx lookup --
|1 Li
|p 14641 -
|2 Crossref
|t Inorg. Chem.
|v 61
|y 2022
999 C 5 |a 10.1021/acs.inorgchem.2c01659
|9 -- missing cx lookup --
|1 Li
|p 11923 -
|2 Crossref
|t Inorg. Chem.
|v 61
|y 2022
999 C 5 |a 10.1021/acsanm.9b01179
|9 -- missing cx lookup --
|1 Li
|p 6809 -
|2 Crossref
|t ACS Appl. Nano Mater.
|v 2
|y 2019
999 C 5 |a 10.1021/acsnano.1c10555
|9 -- missing cx lookup --
|1 Li
|p 4348 -
|2 Crossref
|t ACS Nano
|v 16
|y 2022
999 C 5 |a 10.1016/0304-8853(87)90721-9
|9 -- missing cx lookup --
|1 Liechtenstein
|p 65 -
|2 Crossref
|t J. Magn. Magn. Mater.
|v 67
|y 1987
999 C 5 |a 10.1103/PhysRevB.100.245114
|9 -- missing cx lookup --
|1 Liu
|p 245114 -
|2 Crossref
|t Phys. Rev. B
|v 100
|y 2019
999 C 5 |a 10.1016/j.jssc.2003.09.041
|9 -- missing cx lookup --
|1 Lukoschus
|p 951 -
|2 Crossref
|t J. Solid State Chem.
|v 177
|y 2004
999 C 5 |a 10.1103/PhysRevB.95.144421
|9 -- missing cx lookup --
|1 McGuire
|p 144421 -
|2 Crossref
|t Phys. Rev. B
|v 95
|y 2017
999 C 5 |a 10.1002/adfm.202208528
|9 -- missing cx lookup --
|2 Crossref
|u Niu, K., Qiu, G., Wang, C., Li, D., Niu, Y., Li, S., Kang, L., Cai, Y., Han, M. & Lin, J. (2023). Adv. Funct. Mater. 33, 2208528.
999 C 5 |a 10.1016/S0304-8853(96)00315-0
|9 -- missing cx lookup --
|1 Ohta
|p 117 -
|2 Crossref
|t J. Magn. Magn. Mater.
|v 163
|y 1996
999 C 5 |a 10.1016/j.ultramic.2006.04.032
|9 -- missing cx lookup --
|1 Oleynikov
|p 523 -
|2 Crossref
|t Ultramicroscopy
|v 107
|y 2007
999 C 5 |a 10.1002/pssa.2210110221
|9 -- missing cx lookup --
|1 Ozawa
|p 581 -
|2 Crossref
|t Phys. Status Solidi A
|v 11
|y 1972
999 C 5 |a 10.1107/S0021889881009618
|9 -- missing cx lookup --
|1 Pawley
|p 357 -
|2 Crossref
|t J. Appl. Cryst.
|v 14
|y 1981
999 C 5 |a 10.1002/zaac.201300314
|9 -- missing cx lookup --
|1 Polesya
|p 2826 -
|2 Crossref
|t Z. Anorg. Allg. Chem.
|v 639
|y 2013
999 C 5 |a 10.1088/0953-8984/22/15/156002
|9 -- missing cx lookup --
|1 Polesya
|p 156002 -
|2 Crossref
|t J. Phys. Condens. Matter
|v 22
|y 2010
999 C 5 |a 10.1107/S1600577517005434
|9 -- missing cx lookup --
|1 Rebuffi
|p 622 -
|2 Crossref
|t J. Synchrotron Rad.
|v 24
|y 2017
999 C 5 |a 10.1107/S0021889869006558
|9 -- missing cx lookup --
|1 Rietveld
|p 65 -
|2 Crossref
|t J. Appl. Cryst.
|v 2
|y 1969
999 C 5 |a 10.1107/S090744490804362X
|9 -- missing cx lookup --
|1 Spek
|p 148 -
|2 Crossref
|t Acta Cryst. D
|v 65
|y 2009
999 C 5 |a 10.1017/S1431927603012224
|9 -- missing cx lookup --
|1 Stadelmann
|p 60 -
|2 Crossref
|t Microsc. Microanal.
|v 9
|y 2003
999 C 5 |a 10.1103/PhysRevB.74.144411
|9 -- missing cx lookup --
|1 Staunton
|p 144411 -
|2 Crossref
|t Phys. Rev. B
|v 74
|y 2006
999 C 5 |a 10.1007/978-1-4684-3500-9_5
|9 -- missing cx lookup --
|2 Crossref
|u Stocks, G. M., Temmerman, W. M. & Györffy, B. L. (1979). Electrons in Disordered Metals and at Metallic Surfaces, edited by P. Phariseau, B. L. Györffy & L. Scheire, pp. 193-221. Boston: Springer US.
999 C 5 |a 10.1038/s41928-022-00754-6
|9 -- missing cx lookup --
|1 Tang
|p 224 -
|2 Crossref
|t Nat. Electron.
|v 5
|y 2022
999 C 5 |2 Crossref
|u Vainshtein, B. K. (2013). Structure Analysis by Electron Diffraction. Elsevier.
999 C 5 |a 10.1139/p80-159
|9 -- missing cx lookup --
|1 Vosko
|p 1200 -
|2 Crossref
|t Can. J. Phys.
|v 58
|y 1980
999 C 5 |a 10.1107/S1600577516018579
|9 -- missing cx lookup --
|1 Watanabe
|p 338 -
|2 Crossref
|t J. Synchrotron Rad.
|v 24
|y 2017
999 C 5 |a 10.1021/acs.nanolett.9b05128
|9 -- missing cx lookup --
|1 Wen
|p 3130 -
|2 Crossref
|t Nano Lett.
|v 20
|y 2020
999 C 5 |a 10.1016/j.jssc.2008.03.021
|9 -- missing cx lookup --
|1 Wontcheu
|p 1492 -
|2 Crossref
|t J. Solid State Chem.
|v 181
|y 2008
999 C 5 |a 10.1002/adma.202200236
|9 -- missing cx lookup --
|1 Yao
|p 2200236 -
|2 Crossref
|t Adv. Mater.
|v 34
|y 2022
999 C 5 |a 10.1016/0304-8853(87)90416-1
|9 -- missing cx lookup --
|1 Yuzuri
|p 223 -
|2 Crossref
|t J. Magn. Magn. Mater.
|v 70
|y 1987
999 C 5 |a 10.1016/0038-1098(90)90323-4
|9 -- missing cx lookup --
|1 Zhang
|p 443 -
|2 Crossref
|t Solid State Commun.
|v 74
|y 1990
999 C 5 |a 10.1063/1.5143387
|9 -- missing cx lookup --
|2 Crossref
|u Zhang, L.-Z., He, X.-D., Zhang, A.-L., Xiao, Q.-L., Lu, W.-L., Chen, F., Feng, Z., Cao, S., Zhang, J. & Ge, J.-Y. (2020). APL Mater. 8, 031101.
999 C 5 |a 10.1103/PhysRevB.101.214413
|9 -- missing cx lookup --
|1 Zhang
|p 214413 -
|2 Crossref
|t Phys. Rev. B
|v 101
|y 2020
999 C 5 |a 10.1039/C9NH00038K
|9 -- missing cx lookup --
|1 Zhang
|p 859 -
|2 Crossref
|t Nanoscale Horiz.
|v 4
|y 2019
999 C 5 |a 10.1007/s12274-017-1913-8
|9 -- missing cx lookup --
|1 Zhao
|p 3116 -
|2 Crossref
|t Nano Res.
|v 11
|y 2018


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21