%0 Journal Article
%A Amalberti, Loris
%A Yang, Zixin
%A Porto Pereira, Rafael Alejandro
%T Gravitational radiation from inspiralling compact binaries to N3LO in the effective field theory approach
%J Physical review / D
%V 110
%N 4
%@ 2470-0010
%C Ridge, NY
%I American Physical Society
%M PUBDB-2024-05728
%M arXiv:2406.03457
%M DESY-24-084
%P 044046
%D 2024
%Z 18 pages, 9 figures, 1 computer-readable ancillary file. v2: typos corrected, ancillary file updated, published version  preprint:607514
%X Within the context of the effective field theory (EFT) framework to gravitational dynamics, we compute the Hamiltonian, source quadrupole moment, and gravitational-wave energy flux for (nonspinning) inspiralling compact binaries at next-to-next-to-next-to leading order (N3LO) in the post-Newtonian (PN) expansion. We use the recently developed d-dimensional multipole-expanded effective theory, and explicitly perform the matching to the (pseudo) stress-energy tensor. The calculation involves Feynman integrals up to three- (conservative) and two-loop (radiative) orders, evaluated within dimensional regularization. Our (ambiguity-free) results confirm (for the first time) the value of the gravitational-wave flux for quasicircular orbits at 3PN order, while paving the way forward to the inclusion of spin effects as well as higher-order computations.
%K binary: compact (INSPIRE)
%K tensor: energy-momentum (INSPIRE)
%K gravitational radiation: energy (INSPIRE)
%K energy: flux (INSPIRE)
%K regularization: dimensional (INSPIRE)
%K spin: effect (INSPIRE)
%K gravitational radiation: flux (INSPIRE)
%K higher-order: 2 (INSPIRE)
%K effective field theory (INSPIRE)
%K gravitation (INSPIRE)
%K Hamiltonian (INSPIRE)
%K Feynman graph (INSPIRE)
%K orbit: circle (INSPIRE)
%K moment: multipole (INSPIRE)
%K conservation law (INSPIRE)
%K binary: coalescence (INSPIRE)
%K asymptotic expansion (INSPIRE)
%K expansion: multipole (INSPIRE)
%K expansion: higher-order (INSPIRE)
%K any-dimensional (INSPIRE)
%K loop integral (INSPIRE)
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:001301034700013
%R 10.1103/PhysRevD.110.044046
%U https://bib-pubdb1.desy.de/record/614027