000614017 001__ 614017
000614017 005__ 20250723172329.0
000614017 0247_ $$2doi$$a10.1038/s41556-024-01436-5
000614017 0247_ $$2ISSN$$a1465-7392
000614017 0247_ $$2ISSN$$a1476-4679
000614017 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05718
000614017 0247_ $$2altmetric$$aaltmetric:164223409
000614017 0247_ $$2pmid$$apmid:38839979
000614017 0247_ $$2WOS$$aWOS:001242204400003
000614017 0247_ $$2openalex$$aopenalex:W4399360680
000614017 037__ $$aPUBDB-2024-05718
000614017 082__ $$a570
000614017 1001_ $$aJungnickel, Katharina Esther Julia$$b0
000614017 245__ $$aMFSD1 with its accessory subunit GLMP functions as a general dipeptide uniporter in lysosomes
000614017 260__ $$aNew York, NY$$bNature America$$c2024
000614017 3367_ $$2DRIVER$$aarticle
000614017 3367_ $$2DataCite$$aOutput Types/Journal article
000614017 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728988942_1708574
000614017 3367_ $$2BibTeX$$aARTICLE
000614017 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000614017 3367_ $$00$$2EndNote$$aJournal Article
000614017 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000614017 542__ $$2Crossref$$i2024-06-05$$uhttps://creativecommons.org/licenses/by/4.0
000614017 542__ $$2Crossref$$i2024-06-05$$uhttps://creativecommons.org/licenses/by/4.0
000614017 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000614017 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000614017 7001_ $$00000-0002-4362-9824$$aGuelle, Océane$$b1
000614017 7001_ $$aIguchi, Miharu$$b2
000614017 7001_ $$00000-0001-5490-4265$$aDong, Wentao$$b3
000614017 7001_ $$0P:(DE-H253)PIP1092190$$aKotov, Vadim$$b4
000614017 7001_ $$0P:(DE-H253)PIP1094699$$aGabriel, Florian$$b5
000614017 7001_ $$aDebacker, Cécile$$b6
000614017 7001_ $$aDairou, Julien$$b7
000614017 7001_ $$aMcCort-Tranchepain, Isabelle$$b8
000614017 7001_ $$aLaqtom, Nouf N.$$b9
000614017 7001_ $$aChan, Sze Ham$$b10
000614017 7001_ $$aEjima, Akika$$b11
000614017 7001_ $$aSato, Kenji$$b12
000614017 7001_ $$aMassa López, David$$b13
000614017 7001_ $$00000-0003-2637-7052$$aSaftig, Paul$$b14
000614017 7001_ $$aMehdipour, Ahmad Reza$$b15
000614017 7001_ $$aAbu-Remaileh, Monther$$b16
000614017 7001_ $$00000-0003-4458-6296$$aGasnier, Bruno$$b17$$eCorresponding author
000614017 7001_ $$0P:(DE-H253)PIP1030211$$aLoew, Christian$$b18$$eCorresponding author
000614017 7001_ $$00000-0002-9699-9351$$aDamme, Markus$$b19$$eCorresponding author
000614017 77318 $$2Crossref$$3journal-article$$a10.1038/s41556-024-01436-5$$bSpringer Science and Business Media LLC$$d2024-06-05$$n7$$p1047-1061$$tNature Cell Biology$$v26$$x1465-7392$$y2024
000614017 773__ $$0PERI:(DE-600)1494945-3$$a10.1038/s41556-024-01436-5$$gVol. 26, no. 7, p. 1047 - 1061$$n7$$p1047-1061$$tNature cell biology$$v26$$x1465-7392$$y2024
000614017 8564_ $$uhttps://bib-pubdb1.desy.de/record/614017/files/s41556-024-01436-5.pdf$$yOpenAccess
000614017 8564_ $$uhttps://bib-pubdb1.desy.de/record/614017/files/s41556-024-01436-5.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000614017 909CO $$ooai:bib-pubdb1.desy.de:614017$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000614017 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1092190$$aEuropean Molecular Biology Laboratory$$b4$$kEMBL
000614017 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092190$$aExternal Institute$$b4$$kExtern
000614017 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1094699$$aCentre for Structural Systems Biology$$b5$$kCSSB
000614017 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1094699$$aEuropean Molecular Biology Laboratory$$b5$$kEMBL
000614017 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1030211$$aCentre for Structural Systems Biology$$b18$$kCSSB
000614017 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030211$$aExternal Institute$$b18$$kExtern
000614017 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000614017 9141_ $$y2024
000614017 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000614017 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000614017 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000614017 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-26$$wger
000614017 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000614017 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000614017 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-12$$wger
000614017 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT CELL BIOL : 2022$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000614017 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT CELL BIOL : 2022$$d2024-12-12
000614017 9201_ $$0I:(DE-H253)CSSB-EMBL-CL-20210806$$kCSSB-EMBL-CL$$lCSSB-EMBL-CL$$x0
000614017 980__ $$ajournal
000614017 980__ $$aVDB
000614017 980__ $$aUNRESTRICTED
000614017 980__ $$aI:(DE-H253)CSSB-EMBL-CL-20210806
000614017 9801_ $$aFullTexts
000614017 999C5 $$1A Ballabio$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41580-019-0185-4$$p101 -$$tNat. Rev. Mol. Cell Biol.$$uBallabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).$$v21$$y2020
000614017 999C5 $$1C Settembre$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41580-023-00676-x$$p223 -$$tNat. Rev. Mol. Cell Biol.$$uSettembre, C. & Perera, R. M. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat. Rev. Mol. Cell Biol. 25, 223–245 (2023).$$v25$$y2023
000614017 999C5 $$1RL Wolfson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cmet.2017.07.001$$p301 -$$tCell Metab.$$uWolfson, R. L. & Sabatini, D. M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 26, 301–309 (2017).$$v26$$y2017
000614017 999C5 $$1JB Lloyd$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4615-5833-0_11$$p361 -$$tSubcell. Biochem.$$uLloyd, J. B. Metabolite efflux and influx across the lysosome membrane. Subcell. Biochem. 27, 361–386 (1996).$$v27$$y1996
000614017 999C5 $$1V Kalatzis$$2Crossref$$9-- missing cx lookup --$$a10.1093/emboj/20.21.5940$$p5940 -$$tEMBO J.$$uKalatzis, V., Cherqui, S., Antignac, C. & Gasnier, B. Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. EMBO J. 20, 5940–5949 (2001).$$v20$$y2001
000614017 999C5 $$1K Sakata$$2Crossref$$9-- missing cx lookup --$$a10.1042/bj3560053$$p53 -$$tBiochem. J$$uSakata, K. et al. Cloning of a lymphatic peptide/histidine transporter. Biochem. J 356, 53–60 (2001).$$v356$$y2001
000614017 999C5 $$1A Jezegou$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1211198109$$pE3434 -$$tProc. Natl Acad. Sci. USA$$uJezegou, A. et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc. Natl Acad. Sci. USA 109, E3434–3443 (2012).$$v109$$y2012
000614017 999C5 $$1GA Wyant$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2017.09.046$$p642 -$$tCell$$uWyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654 e612 (2017).$$v171$$y2017
000614017 999C5 $$1Q Verdon$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1617066114$$pE3602 -$$tProc. Natl Acad. Sci. USA$$uVerdon, Q. et al. SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells. Proc. Natl Acad. Sci. USA 114, E3602–E3611 (2017).$$v114$$y2017
000614017 999C5 $$1CH Adelmann$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2937-x$$p699 -$$tNature$$uAdelmann, C. H. et al. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588, 699–704 (2020).$$v588$$y2020
000614017 999C5 $$1B Liu$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1220281$$p351 -$$tScience$$uLiu, B., Du, H., Rutkowski, R., Gartner, A. & Wang, X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337, 351–354 (2012).$$v337$$y2012
000614017 999C5 $$1M Abu-Remaileh$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aan6298$$p807 -$$tScience$$uAbu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).$$v358$$y2017
000614017 999C5 $$1X Leray$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2025315118$$pe2025315118 -$$tProc. Natl Acad. Sci. USA$$uLeray, X. et al. Arginine-selective modulation of the lysosomal transporter PQLC2 through a gate-tuning mechanism. Proc. Natl Acad. Sci. USA 118, e2025315118 (2021).$$v118$$y2021
000614017 999C5 $$1U Bandyopadhyay$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2114912119$$pe2114912119 -$$tProc. Natl Acad. Sci. USA$$uBandyopadhyay, U. et al. Leucine retention in lysosomes is regulated by starvation. Proc. Natl Acad. Sci. USA 119, e2114912119 (2022).$$v119$$y2022
000614017 999C5 $$1SA Fromm$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41594-020-0490-9$$p1017 -$$tNat. Struct. Mol. Biol.$$uFromm, S. A., Lawrence, R. E. & Hurley, J. H. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat. Struct. Mol. Biol. 27, 1017–1023 (2020).$$v27$$y2020
000614017 999C5 $$1J Amick$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.201906076$$tJ. Cell Biol.$$uAmick, J., Tharkeshwar, A. K., Talaia, G. & Ferguson, S. M. PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation. J. Cell Biol. 219, e201906076 (2020).$$v219$$y2020
000614017 999C5 $$1LX Heinz$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2282-0$$p316 -$$tNature$$uHeinz, L. X. et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. Nature 581, 316–322 (2020).$$v581$$y2020
000614017 999C5 $$1X Guo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2022.08.020$$p3739 -$$tCell$$uGuo, X. et al. Structure and mechanism of human cystine exporter cystinosin. Cell 185, 3739–3752 e3718 (2022).$$v185$$y2022
000614017 999C5 $$1M Lobel$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-32589-2$$tNat. Commun.$$uLobel, M. et al. Structural basis for proton coupled cystine transport by cystinosin. Nat. Commun. 13, 4845 (2022).$$v13$$y2022
000614017 999C5 $$1HT Lei$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41594-018-0072-2$$p522 -$$tNat. Struct. Mol. Biol.$$uLei, H. T., Ma, J., Sanchez Martinez, S. & Gonen, T. Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat. Struct. Mol. Biol. 25, 522–527 (2018).$$v25$$y2018
000614017 999C5 $$1LD Isenman$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(20)80464-5$$p23856 -$$tJ. Biol. Chem.$$uIsenman, L. D. & Dice, J. F. Selective release of peptides from lysosomes. J. Biol. Chem. 268, 23856–23859 (1993).$$v268$$y1993
000614017 999C5 $$1M Thamotharan$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.272.18.11786$$p11786 -$$tJ. Biol. Chem.$$uThamotharan, M., Lombardo, Y. B., Bawani, S. Z. & Adibi, S. A. An active mechanism for completion of the final stage of protein degradation in the liver, lysosomal transport of dipeptides. J. Biol. Chem. 272, 11786–11790 (1997).$$v272$$y1997
000614017 999C5 $$1SJ Bird$$2Crossref$$9-- missing cx lookup --$$a10.1016/0005-2736(90)90353-P$$p267 -$$tBiochim. Biophys. Acta$$uBird, S. J. & Lloyd, J. B. Evidence for a dipeptide porter in the lysosome membrane. Biochim. Biophys. Acta 1024, 267–270 (1990).$$v1024$$y1990
000614017 999C5 $$1JW Coffey$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(18)93301-6$$p3255 -$$tJ. Biol. Chem.$$uCoffey, J. W. & De Duve, C. Digestive activity of lysosomes. I. The digestion of proteins by extracts of rat liver lysosomes. J. Biol. Chem. 243, 3255–3263 (1968).$$v243$$y1968
000614017 999C5 $$1DE Bockman$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02788388$$p221 -$$tInt. J. Pancreatol.$$uBockman, D. E., Ganapathy, V., Oblak, T. G. & Leibach, F. H. Localization of peptide transporter in nuclei and lysosomes of the pancreas. Int. J. Pancreatol. 22, 221–225 (1997).$$v22$$y1997
000614017 999C5 $$1T Kobayashi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.immuni.2014.08.011$$p375 -$$tImmunity$$uKobayashi, T. et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41, 375–388 (2014).$$v41$$y2014
000614017 999C5 $$1H Oppermann$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00726-019-02739-w$$p999 -$$tAmino Acids$$uOppermann, H., Heinrich, M., Birkemeyer, C., Meixensberger, J. & Gaunitz, F. The proton-coupled oligopeptide transporters PEPT2, PHT1 and PHT2 mediate the uptake of carnosine in glioblastoma cells. Amino Acids 51, 999–1008 (2019).$$v51$$y2019
000614017 999C5 $$1RK Bhardwaj$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ejps.2005.09.014$$p533 -$$tEur. J. Pharm. Sci.$$uBhardwaj, R. K., Herrera-Ruiz, D., Eltoukhy, N., Saad, M. & Knipp, G. T. The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells. Eur. J. Pharm. Sci. 27, 533–542 (2006).$$v27$$y2006
000614017 999C5 $$1DJ Lindley$$2Crossref$$uLindley, D. J., Carl, S. M., Mowery, S. A. & Knipp, G. T. The evaluation of peptide/histidine transporter 1 (Pht1) function: uptake kinetics utilizing a Cos-7 stably transfected cell line. Rev. Mex. Cienc. Farm. 42, 57–65 (2011).$$y2011
000614017 999C5 $$1T Yamashita$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.272.15.10205$$p10205 -$$tJ. Biol. Chem.$$uYamashita, T. et al. Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272, 10205–10211 (1997).$$v272$$y1997
000614017 999C5 $$1M Killer$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.abk3259$$peabk3259 -$$tSci. Adv.$$uKiller, M., Wald, J., Pieprzyk, J., Marlovits, T. C. & Low, C. Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes. Sci. Adv. 7, eabk3259 (2021).$$v7$$y2021
000614017 999C5 $$1JL Parker$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.abh3355$$peabh3355 -$$tSci. Adv.$$uParker, J. L. et al. Cryo-EM structure of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in mammals. Sci. Adv. 7, eabh3355 (2021).$$v7$$y2021
000614017 999C5 $$1J Shen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.str.2022.04.011$$p1035 -$$tStructure$$uShen, J. et al. Extracellular domain of PepT1 interacts with TM1 to facilitate substrate transport. Structure 30, 1035–1041 e1033 (2022).$$v30$$y2022
000614017 999C5 $$1TF Custodio$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-41420-5$$tNat. Commun.$$uCustodio, T. F. et al. Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1. Nat. Commun. 14, 5696 (2023).$$v14$$y2023
000614017 999C5 $$1V Kotov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2023.112831$$tCell Rep.$$uKotov, V. et al. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition. Cell Rep. 42, 112831 (2023).$$v42$$y2023
000614017 999C5 $$1A Chapel$$2Crossref$$9-- missing cx lookup --$$a10.1074/mcp.M112.021980$$p1572 -$$tMol. Cell. Proteomics$$uChapel, A. et al. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol. Cell. Proteomics 12, 1572–1588 (2013).$$v12$$y2013
000614017 999C5 $$1S Markmann$$2Crossref$$9-- missing cx lookup --$$a10.1074/mcp.M116.063636$$p438 -$$tMol. Cell. Proteomics$$uMarkmann, S. et al. Quantitative proteome analysis of mouse liver lysosomes provides evidence for mannose 6-phosphate-independent targeting mechanisms of acid hydrolases in mucolipidosis II. Mol. Cell. Proteomics 16, 438–450 (2017).$$v16$$y2017
000614017 999C5 $$1CJ Law$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.micro.61.080706.093329$$p289 -$$tAnnu. Rev. Microbiol.$$uLaw, C. J., Maloney, P. C. & Wang, D. N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305 (2008).$$v62$$y2008
000614017 999C5 $$1K Bartels$$2Crossref$$9-- missing cx lookup --$$a10.1002/cbic.202100106$$p2657 -$$tChemBioChem$$uBartels, K., Lasitza-Male, T., Hofmann, H. & Low, C. Single-molecule FRET of membrane transport proteins. ChemBioChem 22, 2657–2671 (2021).$$v22$$y2021
000614017 999C5 $$1D Drew$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.0c00983$$p5289 -$$tChem. Rev.$$uDrew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021).$$v121$$y2021
000614017 999C5 $$1EM Quistgaard$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm.2015.25$$p123 -$$tNat. Rev. Mol. Cell Biol.$$uQuistgaard, E. M., Low, C., Guettou, F. & Nordlund, P. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat. Rev. Mol. Cell Biol. 17, 123–132 (2016).$$v17$$y2016
000614017 999C5 $$1E Ferrada$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.isci.2022.105096$$p105096 -$$tiScience$$uFerrada, E. & Superti-Furga, G. A structure and evolutionary-based classification of solute carriers. iScience 25, 105096 (2022).$$v25$$y2022
000614017 999C5 $$1D Massa Lopez$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.50025$$pe50025 -$$teLife$$uMassa Lopez, D. et al. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. eLife 8, e50025 (2019).$$v8$$y2019
000614017 999C5 $$1DM Lopez$$2Crossref$$9-- missing cx lookup --$$a10.1096/fj.202000912RR$$p14695 -$$tFASEB J.$$uLopez, D. M., Kahlau, L., Jungnickel, K. E. J., Low, C. & Damme, M. Characterization of the complex of the lysosomal membrane transporter MFSD1 and its accessory subunit GLMP. FASEB J. 34, 14695–14709 (2020).$$v34$$y2020
000614017 999C5 $$1JS Scow$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jss.2011.02.018$$p17 -$$tJ. Surg. Res.$$uScow, J. S. et al. Differentiating passive from transporter-mediated uptake by PepT1: a comparison and evaluation of four methods. J. Surg. Res. 170, 17–23 (2011).$$v170$$y2011
000614017 999C5 $$1A Flayhan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.str.2018.01.007$$p345 -$$tStructure$$uFlayhan, A. et al. Saposin lipid nanoparticles: a highly versatile and modular tool for membrane protein research. Structure 26, 345–355 e345 (2018).$$v26$$y2018
000614017 999C5 $$1Y Ural-Blimke$$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.8b11343$$p2404 -$$tJ. Am. Chem. Soc.$$uUral-Blimke, Y. et al. Structure of prototypic peptide transporter DtpA from E. coli in complex with valganciclovir provides insights into drug binding of human PepT1. J. Am. Chem. Soc. 141, 2404–2412 (2019).$$v141$$y2019
000614017 999C5 $$1M Martinez Molledo$$2Crossref$$9-- missing cx lookup --$$a10.1002/1873-3468.13246$$p3239 -$$tFEBS Lett.$$uMartinez Molledo, M., Quistgaard, E. M. & Low, C. Tripeptide binding in a proton-dependent oligopeptide transporter. FEBS Lett. 592, 3239–3247 (2018).$$v592$$y2018
000614017 999C5 $$1R Ruivo$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1115581109$$pE210 -$$tProc. Natl Acad. Sci. USA$$uRuivo, R. et al. Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin. Proc. Natl Acad. Sci. USA 109, E210–217 (2012).$$v109$$y2012
000614017 999C5 $$1P Morin$$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.emboj.7600464$$p4560 -$$tEMBO J.$$uMorin, P., Sagne, C. & Gasnier, B. Functional characterization of wild-type and mutant human sialin. EMBO J. 23, 4560–4570 (2004).$$v23$$y2004
000614017 999C5 $$1K Kano$$2Crossref$$9-- missing cx lookup --$$a10.1016/0005-2736(78)90048-2$$p289 -$$tBiochim. Biophys. Acta$$uKano, K. & Fendler, J. H. Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. Biochim. Biophys. Acta 509, 289–299 (1978).$$v509$$y1978
000614017 999C5 $$1VS Reddy$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1742-4658.2012.08588.x$$p2022 -$$tFEBS J.$$uReddy, V. S., Shlykov, M. A., Castillo, R., Sun, E. I. & Saier, M. H. Jr. The major facilitator superfamily (MFS) revisited. FEBS J. 279, 2022–2035 (2012).$$v279$$y2012
000614017 999C5 $$1SS Pao$$2Crossref$$9-- missing cx lookup --$$a10.1128/MMBR.62.1.1-34.1998$$p1 -$$tMicrobiol. Mol. Biol. Rev.$$uPao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998).$$v62$$y1998
000614017 999C5 $$1EC O’Neill$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.carres.2017.07.005$$p118 -$$tCarbohydr. Res.$$uO’Neill, E. C. et al. Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis. Carbohydr. Res. 451, 118–132 (2017).$$v451$$y2017
000614017 999C5 $$1K Tunyasuvunakool$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03828-1$$p590 -$$tNature$$uTunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).$$v596$$y2021
000614017 999C5 $$1M Martinez Molledo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.str.2018.01.005$$p467 -$$tStructure$$uMartinez Molledo, M., Quistgaard, E. M., Flayhan, A., Pieprzyk, J. & Low, C. Multispecific substrate recognition in a proton-dependent oligopeptide transporter. Structure 26, 467–476 e464 (2018).$$v26$$y2018
000614017 999C5 $$1JA Lyons$$2Crossref$$9-- missing cx lookup --$$a10.15252/embr.201338403$$p886 -$$tEMBO Rep$$uLyons, J. A. et al. Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters. EMBO Rep 15, 886–893 (2014).$$v15$$y2014
000614017 999C5 $$1M Dong$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11095-023-03589-8$$p2585 -$$tPharm. Res.$$uDong, M., Li, P., Luo, J., Chen, B. & Jiang, H. Oligopeptide/histidine transporter PHT1 and PHT2—function, regulation, and pathophysiological implications specifically in immunoregulation. Pharm. Res. 40, 2585–2596 (2023).$$v40$$y2023
000614017 999C5 $$1D Turk$$2Crossref$$9-- missing cx lookup --$$a10.1093/emboj/20.23.6570$$p6570 -$$tEMBO J.$$uTurk, D. et al. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J. 20, 6570–6582 (2001).$$v20$$y2001
000614017 999C5 $$1JM Bouma$$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-4165(76)90331-7$$p853 -$$tBiochim. Biophys. Acta$$uBouma, J. M., Scheper, A., Duursma, A. & Gruber, M. Localization and some properties of lysosomal dipeptidases in rat liver. Biochim. Biophys. Acta 444, 853–862 (1976).$$v444$$y1976
000614017 999C5 $$1V Botbol$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(18)80025-4$$p13504 -$$tJ. Biol. Chem.$$uBotbol, V. & Scornik, O. A. Role of bestatin-sensitive exopeptidases in the intracellular degradation of hepatic proteins. J. Biol. Chem. 264, 13504–13509 (1989).$$v264$$y1989
000614017 999C5 $$1A Saminathan$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-020-00784-1$$p96 -$$tNat. Nanotechnol.$$uSaminathan, A. et al. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16, 96–103 (2021).$$v16$$y2021
000614017 999C5 $$1M Koivusalo$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1600-0854.2011.01215.x$$p972 -$$tTraffic$$uKoivusalo, M., Steinberg, B. E., Mason, D. & Grinstein, S. In situ measurement of the electrical potential across the lysosomal membrane using FRET. Traffic 12, 972–982 (2011).$$v12$$y2011
000614017 999C5 $$1M Schrecker$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.59555$$pe59555 -$$teLife$$uSchrecker, M., Korobenko, J. & Hite, R. K. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. eLife 9, e59555 (2020).$$v9$$y2020
000614017 999C5 $$1D Boytsov$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2319686121$$tProc. Natl Acad. Sci. USA$$uBoytsov, D. et al. Orphan lysosomal solute carrier MFSD1 facilitates highly selective dipeptide transport. Proc. Natl Acad. Sci. USA 121, e2319686121 (2024).$$v121$$y2024
000614017 999C5 $$1B Winchester$$2Crossref$$9-- missing cx lookup --$$a10.1093/glycob/cwi041$$p1R -$$tGlycobiology$$uWinchester, B. Lysosomal metabolism of glycoproteins. Glycobiology 15, 1R–15R (2005).$$v15$$y2005
000614017 999C5 $$1V Kotov$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.3986$$p201 -$$tProtein Sci.$$uKotov, V. et al. In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci. 30, 201–217 (2021).$$v30$$y2021
000614017 999C5 $$1NN Nasief$$2Crossref$$9-- missing cx lookup --$$a10.1021/jm401609a$$p2315 -$$tJ. Med. Chem.$$uNasief, N. N. & Hangauer, D. Influence of neighboring groups on the thermodynamics of hydrophobic binding: an added complex facet to the hydrophobic effect. J. Med. Chem. 57, 2315–2333 (2014).$$v57$$y2014
000614017 999C5 $$1G Backliwal$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkn423$$pe96 -$$tNucleic Acids Res.$$uBackliwal, G. et al. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res. 36, e96 (2008).$$v36$$y2008
000614017 999C5 $$1J Pieprzyk$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4939-8730-6_2$$p17 -$$tMethods Mol. Biol.$$uPieprzyk, J., Pazicky, S. & Low, C. Transient expression of recombinant membrane-eGFP fusion proteins in HEK293 Cells. Methods Mol. Biol. 1850, 17–31 (2018).$$v1850$$y2018
000614017 999C5 $$1Y Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-62703-764-8_16$$p235 -$$tMethods Mol. Biol.$$uZhang, Y., Werling, U. & Edelmann, W. Seamless ligation cloning extract (SLiCE) cloning method. Methods Mol. Biol. 1116, 235–244 (2014).$$v1116$$y2014
000614017 999C5 $$1CG Alexander$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbapap.2014.09.016$$p2241 -$$tBiochim. Biophys. Acta$$uAlexander, C. G. et al. Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings. Biochim. Biophys. Acta 1844, 2241–2250 (2014).$$v1844$$y2014
000614017 999C5 $$1JL Parker$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.04273$$pe04273 -$$teLife$$uParker, J. L., Mindell, J. A. & Newstead, S. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. eLife 3, e04273 (2014).$$v3$$y2014
000614017 999C5 $$1J Gunther$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jmedchem.2c00441$$p14366 -$$tJ. Med. Chem.$$uGunther, J. et al. BAY-069, a novel (trifluoromethyl)pyrimidinedione-based BCAT1/2 inhibitor and chemical probe. J. Med. Chem. 65, 14366–14390 (2022).$$v65$$y2022
000614017 999C5 $$1A Punjani$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.4169$$p290 -$$tNat. Methods$$uPunjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).$$v14$$y2017
000614017 999C5 $$1A Rohou$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2015.08.008$$p216 -$$tJ. Struct. Biol.$$uRohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).$$v192$$y2015
000614017 999C5 $$1A Punjani$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-020-00990-8$$p1214 -$$tNat. Methods$$uPunjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).$$v17$$y2020
000614017 999C5 $$1JL Rubinstein$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2015.08.007$$p188 -$$tJ. Struct. Biol.$$uRubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).$$v192$$y2015
000614017 999C5 $$1TD Goddard$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.3235$$p14 -$$tProtein Sci.$$uGoddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).$$v27$$y2018
000614017 999C5 $$1J Jumper$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03819-2$$p583 -$$tNature$$uJumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).$$v596$$y2021
000614017 999C5 $$1W Lugmayr$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41596-022-00757-9$$p239 -$$tNat. Protoc.$$uLugmayr, W. et al. StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Nat. Protoc. 18, 239–264 (2023).$$v18$$y2023
000614017 999C5 $$1RY Wang$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.17219$$pe17219 -$$teLife$$uWang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).$$v5$$y2016
000614017 999C5 $$1TI Croll$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798318002425$$p519 -$$tActa Crystallogr. D$$uCroll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).$$v74$$y2018
000614017 999C5 $$1P Emsley$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444910007493$$p486 -$$tActa Crystallogr. D$$uEmsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).$$v66$$y2010
000614017 999C5 $$1D Liebschner$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798319011471$$p861 -$$tActa Crystallogr. D$$uLiebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).$$v75$$y2019
000614017 999C5 $$1E Jurrus$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.3280$$p112 -$$tProtein Sci.$$uJurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).$$v27$$y2018
000614017 999C5 $$1S Jo$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20945$$p1859 -$$tJ. Comput. Chem.$$uJo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).$$v29$$y2008
000614017 999C5 $$1Y Song$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.21222$$p2231 -$$tJ. Comput. Chem.$$uSong, Y., Mao, J. & Gunner, M. R. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling. J. Comput. Chem. 30, 2231–2247 (2009).$$v30$$y2009
000614017 999C5 $$1W Humphrey$$2Crossref$$9-- missing cx lookup --$$a10.1016/0263-7855(96)00018-5$$p33 -$$tJ. Mol. Graph.$$uHumphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). 27–38.$$v14$$y1996
000614017 999C5 $$1N Michaud-Agrawal$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.21787$$p2319 -$$tJ. Comput. Chem.$$uMichaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).$$v32$$y2011