001     613927
005     20250715171228.0
024 7 _ |a 10.1016/j.celrep.2024.114759
|2 doi
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-05706
|2 datacite_doi
024 7 _ |a 39276351
|2 pmid
024 7 _ |a WOS:001318568400001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4402509098
037 _ _ |a PUBDB-2024-05706
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kim, Soo-Kyoung
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Diribonuclease activity eliminates toxic diribonucleotide accumulation
260 _ _ |a [New York, NY]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727682785_477454
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a RNA degradation is a central process in cells, which is vital for transcriptional regulation. The degradation process is initiated by endoribonucleolytic fragmentation of long RNA polymers, followed by exoribonucleolytic cleavage to release mononucleotides from the fragment ends. In this process, the degradation of short oligonucleotides, especially diribonucleotides, into mononucleotides requires specific enzymatic activity, which in Gram-negative bacteria is provided by oligoribonuclease (Orn). Orn is unique in that it is the only essential exoribonuclease in Escherichia coli. Recent studies have shown that Orn cleaves only diribonucleotides under physiological conditions, suggesting that the accumulation of dinucleotides poisons cells. Yet, related organisms, such as Pseudomonas aeruginosa, display a growth defect but are viable without Orn, contesting its essentiality. Here, we took advantage of P. aeruginosa orn mutants to elucidate the mechanisms of their survival. Genetic screening for suppressors that restored colony morphology identified yciV. Purified YciV exhibited diribonuclease activity. YciV is present in all $\gamma$-proteobacteria, suggesting that the enzyme from P. aeruginosa is distinct from its E. coli ortholog. Phylogenetic analysis revealed differences between the two orthologs that were mapped to the active site of the enzyme and correlated with differences in substrate profiles. The expression of P. aeruginosa YciV in E. coli eliminated the necessity of orn. Similarly, the deletion of yciV from P. aeruginosa caused orn to become essential. Together, these results show that diribonuclease activity is required in $\gamma$-proteobacteria and that diribonucleotides may be utilized to monitor the efficacy of RNA degradation. Because Orn is found in higher eukaryotes, these observations indicate a conserved mechanism for monitoring RNA degradation.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
542 _ _ |i 2024-09-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-09-01
|2 Crossref
|u https://www.elsevier.com/legal/tdmrep-license
542 _ _ |i 2024-08-29
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P11
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P11-20150101
|6 EXP:(DE-H253)P-P11-20150101
|x 0
700 1 _ |a Orr, Mona
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Turdiev, Husan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jenkins, Conor
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lormand, Justin David
|0 P:(DE-H253)PIP1099916
|b 4
700 1 _ |a Myers, Tanner
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Burnim, Audrey
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Carter, Jared
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Husseini, Nour El
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kung, Warren
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jiang, Xiaofang
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Sondermann, Holger
|0 P:(DE-H253)PIP1093629
|b 11
700 1 _ |a Winkler, Wade
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lee, Vincent
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 1 8 |a 10.1016/j.celrep.2024.114759
|b Elsevier BV
|d 2024-09-01
|n 9
|p 114759
|3 journal-article
|2 Crossref
|t Cell Reports
|v 43
|y 2024
|x 2211-1247
773 _ _ |a 10.1016/j.celrep.2024.114759
|g Vol. 43, no. 9, p. 114759 -
|0 PERI:(DE-600)2649101-1
|n 9
|p 114759
|t Cell reports
|v 43
|y 2024
|x 2211-1247
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/613927/files/Dinuclease%20essentiality_HS2.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/613927/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/613927/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/613927/files/Figures%201-8%20and%20supplemental.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/613927/files/Final_PDF_Cell_Reports.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/613927/files/Figures%201-8%20and%20supplemental.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/613927/files/Final_PDF_Cell_Reports.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/613927/files/Dinuclease%20essentiality_HS2.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:613927
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1099916
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 4
|6 P:(DE-H253)PIP1099916
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1093629
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 11
|6 P:(DE-H253)PIP1093629
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:49:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:49:39Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:49:39Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2022
|d 2024-12-16
920 1 _ |0 I:(DE-H253)CSSB-DESY-HS-20210521
|k CSSB-DESY-HS
|l Strukturelle Mikrobiologie CSSB
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-DESY-HS-20210521
980 1 _ |a FullTexts
999 C 5 |a 10.1152/ajplegacy.1920.52.1.203
|9 -- missing cx lookup --
|1 Jones
|p 203 -
|2 Crossref
|t Am. J. Physiol.
|v 52
|y 1920
999 C 5 |a 10.1016/S0021-9258(19)40946-0
|9 -- missing cx lookup --
|1 Datta
|p 7313 -
|2 Crossref
|t J. Biol. Chem.
|v 250
|y 1975
999 C 5 |a 10.1016/S0021-9258(19)40945-9
|9 -- missing cx lookup --
|1 Niyogi
|p 7307 -
|2 Crossref
|t J. Biol. Chem.
|v 250
|y 1975
999 C 5 |a 10.1016/0006-291X(67)90520-7
|9 -- missing cx lookup --
|1 Stevens
|p 550 -
|2 Crossref
|t Biochem. Biophys. Res. Commun.
|v 29
|y 1967
999 C 5 |a 10.1093/nar/gkj472
|9 -- missing cx lookup --
|1 Deutscher
|p 659 -
|2 Crossref
|t Nucleic Acids Res.
|v 34
|y 2006
999 C 5 |a 10.1016/j.mib.2007.05.008
|9 -- missing cx lookup --
|1 Condon
|p 271 -
|2 Crossref
|t Curr. Opin. Microbiol.
|v 10
|y 2007
999 C 5 |a 10.1111/j.1574-6976.2010.00242.x
|9 -- missing cx lookup --
|1 Arraiano
|p 883 -
|2 Crossref
|t FEMS Microbiol. Rev.
|v 34
|y 2010
999 C 5 |a 10.1146/annurev-genet-120213-092340
|9 -- missing cx lookup --
|1 Hui
|p 537 -
|2 Crossref
|t Annu. Rev. Genet.
|v 48
|y 2014
999 C 5 |a 10.1038/nrm2917
|9 -- missing cx lookup --
|1 Belasco
|p 467 -
|2 Crossref
|t Nat. Rev. Mol. Cell Biol.
|v 11
|y 2010
999 C 5 |a 10.1073/pnas.96.8.4372
|9 -- missing cx lookup --
|1 Ghosh
|p 4372 -
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 96
|y 1999
999 C 5 |a 10.1038/325279a0
|9 -- missing cx lookup --
|1 Ross
|p 279 -
|2 Crossref
|t Nature
|v 325
|y 1987
999 C 5 |a 10.1021/bi0100236
|9 -- missing cx lookup --
|1 Chang
|p 3420 -
|2 Crossref
|t Biochemistry
|v 40
|y 2001
999 C 5 |a 10.1073/pnas.1421450112
|9 -- missing cx lookup --
|1 Cohen
|p 11359 -
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 112
|y 2015
999 C 5 |a 10.1073/pnas.1507245112
|9 -- missing cx lookup --
|1 Orr
|p E5048 -
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 112
|y 2015
999 C 5 |a 10.1073/pnas.0511100103
|9 -- missing cx lookup --
|1 Liberati
|p 2833 -
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 103
|y 2006
999 C 5 |a 10.1128/JB.00300-18
|1 Orr
|9 -- missing cx lookup --
|2 Crossref
|t J. Bacteriol.
|v 200
|y 2018
999 C 5 |a 10.7554/eLife.46313
|1 Kim
|9 -- missing cx lookup --
|2 Crossref
|t Elife
|v 8
|y 2019
999 C 5 |a 10.1111/j.1365-2958.2004.04402.x
|9 -- missing cx lookup --
|1 Kulasekara
|p 368 -
|2 Crossref
|t Mol. Microbiol.
|v 55
|y 2005
999 C 5 |a 10.1021/acs.biochem.5b00192
|9 -- missing cx lookup --
|1 Ghodge
|p 2911 -
|2 Crossref
|t Biochemistry
|v 54
|y 2015
999 C 5 |a 10.1073/pnas.98.1.37
|9 -- missing cx lookup --
|1 Jean
|p 37 -
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 98
|y 2001
999 C 5 |a 10.1128/mBio.01385-14
|1 Palace
|9 -- missing cx lookup --
|2 Crossref
|t mBio
|v 5
|y 2014
999 C 5 |a 10.1371/journal.ppat.1003800
|1 Kamp
|9 -- missing cx lookup --
|2 Crossref
|t PLoS Pathog.
|v 9
|y 2013
999 C 5 |a 10.1093/nar/gkac617
|9 -- missing cx lookup --
|1 Sharma
|p 8807 -
|2 Crossref
|t Nucleic Acids Res.
|v 50
|y 2022
999 C 5 |a 10.1021/bi401640r
|9 -- missing cx lookup --
|1 Cummings
|p 591 -
|2 Crossref
|t Biochemistry
|v 53
|y 2014
999 C 5 |a 10.1038/s41587-023-01773-0
|9 -- missing cx lookup --
|1 van Kempen
|p 243 -
|2 Crossref
|t Nat. Biotechnol.
|v 42
|y 2024
999 C 5 |a 10.1002/prot.23035
|9 -- missing cx lookup --
|1 Han
|p 2146 -
|2 Crossref
|t Proteins
|v 79
|y 2011
999 C 5 |1 Corso
|y 2024
|2 Crossref
|o Corso 2024
999 C 5 |1 Corso
|y 2023
|2 Crossref
|o Corso 2023
999 C 5 |a 10.7554/eLife.70146
|1 Lormand
|9 -- missing cx lookup --
|2 Crossref
|t Elife
|v 10
|y 2021
999 C 5 |a 10.1038/s41586-021-03819-2
|9 -- missing cx lookup --
|1 Jumper
|p 583 -
|2 Crossref
|t Nature
|v 596
|y 2021
999 C 5 |a 10.1038/s41592-022-01488-1
|9 -- missing cx lookup --
|1 Mirdita
|p 679 -
|2 Crossref
|t Nat. Methods
|v 19
|y 2022
999 C 5 |a 10.1073/pnas.100127597
|9 -- missing cx lookup --
|1 Yu
|p 5978 -
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 97
|y 2000
999 C 5 |a 10.1016/S0378-1119(00)00071-8
|9 -- missing cx lookup --
|1 Murphy
|p 321 -
|2 Crossref
|t Gene
|v 246
|y 2000
999 C 5 |a 10.1073/pnas.120163297
|9 -- missing cx lookup --
|1 Datsenko
|p 6640 -
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 97
|y 2000
999 C 5 |a 10.1128/ecosal.5.2.3
|1 Bremer
|9 -- missing cx lookup --
|2 Crossref
|t EcoSal Plus
|v 3
|y 2008
999 C 5 |a 10.1016/j.talanta.2019.120161
|1 Zbornikova
|9 -- missing cx lookup --
|2 Crossref
|t Talanta
|v 205
|y 2019
999 C 5 |a 10.1038/s41598-017-10988-6
|1 Varik
|9 -- missing cx lookup --
|2 Crossref
|t Sci. Rep.
|v 7
|y 2017
999 C 5 |a 10.1093/nar/gkaa260
|9 -- missing cx lookup --
|1 Jain
|p 5616 -
|2 Crossref
|t Nucleic Acids Res.
|v 48
|y 2020
999 C 5 |a 10.1080/15476286.2021.2000793
|9 -- missing cx lookup --
|1 Shatoff
|p 856 -
|2 Crossref
|t RNA Biol.
|v 18
|y 2021
999 C 5 |a 10.1038/msb.2011.58
|9 -- missing cx lookup --
|1 Christen
|p 528 -
|2 Crossref
|t Mol. Syst. Biol.
|v 7
|y 2011
999 C 5 |a 10.1099/mic.0.054619-0
|9 -- missing cx lookup --
|1 Liu
|p 886 -
|2 Crossref
|t Microbiology
|v 158
|y 2012
999 C 5 |a 10.1128/IAI.00312-18
|1 Sternon
|9 -- missing cx lookup --
|2 Crossref
|t Infect. Immun.
|v 86
|y 2018
999 C 5 |a 10.1371/journal.pgen.1005348
|1 Druzhinin
|9 -- missing cx lookup --
|2 Crossref
|t PLoS Genet.
|v 11
|y 2015
999 C 5 |a 10.1016/j.molcel.2011.06.005
|9 -- missing cx lookup --
|1 Goldman
|p 817 -
|2 Crossref
|t Mol. Cell
|v 42
|y 2011
999 C 5 |a 10.1073/pnas.2106388118
|1 Skalenko
|9 -- missing cx lookup --
|2 Crossref
|t Proc. Natl. Acad. Sci. USA
|v 118
|y 2021
999 C 5 |a 10.1128/JB.180.10.2779-2781.1998
|9 -- missing cx lookup --
|1 Zhang
|p 2779 -
|2 Crossref
|t J. Bacteriol.
|v 180
|y 1998
999 C 5 |a 10.1371/journal.pone.0064670
|1 Bruni
|9 -- missing cx lookup --
|2 Crossref
|t PLoS One
|v 8
|y 2013
999 C 5 |a 10.1126/science.7604262
|9 -- missing cx lookup --
|1 Rahme
|p 1899 -
|2 Crossref
|t Science
|v 268
|y 1995
999 C 5 |a 10.1128/JB.180.8.2063-2071.1998
|9 -- missing cx lookup --
|1 Murphy
|p 2063 -
|2 Crossref
|t J. Bacteriol.
|v 180
|y 1998
999 C 5 |a 10.1111/j.1365-2958.2007.05879.x
|9 -- missing cx lookup --
|1 Lee
|p 1474 -
|2 Crossref
|t Mol. Microbiol.
|v 65
|y 2007
999 C 5 |a 10.1016/0378-1119(86)90358-6
|9 -- missing cx lookup --
|1 Furste
|p 119 -
|2 Crossref
|t Gene
|v 48
|y 1986
999 C 5 |a 10.7554/eLife.46313
|1 Kim
|9 -- missing cx lookup --
|2 Crossref
|t Elife
|v 8
|y 2019
999 C 5 |a 10.1038/nmeth.2019
|9 -- missing cx lookup --
|1 Schindelin
|p 676 -
|2 Crossref
|t Nat. Methods
|v 9
|y 2012
999 C 5 |a 10.1107/S0907444909047337
|9 -- missing cx lookup --
|1 Kabsch
|p 125 -
|2 Crossref
|t Acta Crystallogr. D Biol. Crystallogr.
|v 66
|y 2010
999 C 5 |a 10.1107/S2059798319011471
|9 -- missing cx lookup --
|1 Liebschner
|p 861 -
|2 Crossref
|t Acta Crystallogr. D Struct. Biol.
|v 75
|y 2019
999 C 5 |a 10.1093/bioinformatics/btu153
|9 -- missing cx lookup --
|1 Seemann
|p 2068 -
|2 Crossref
|t Bioinformatics
|v 30
|y 2014
999 C 5 |a 10.1093/molbev/msab293
|9 -- missing cx lookup --
|1 Cantalapiedra
|p 5825 -
|2 Crossref
|t Mol. Biol. Evol.
|v 38
|y 2021
999 C 5 |a 10.1093/bioinformatics/btu031
|9 -- missing cx lookup --
|1 Jones
|p 1236 -
|2 Crossref
|t Bioinformatics
|v 30
|y 2014
999 C 5 |a 10.1093/bioinformatics/btq003
|9 -- missing cx lookup --
|1 Huang
|p 680 -
|2 Crossref
|t Bioinformatics
|v 26
|y 2010
999 C 5 |a 10.1038/msb.2011.75
|9 -- missing cx lookup --
|1 Sievers
|p 539 -
|2 Crossref
|t Mol. Syst. Biol.
|v 7
|y 2011
999 C 5 |a 10.1093/molbev/msaa015
|9 -- missing cx lookup --
|1 Minh
|p 1530 -
|2 Crossref
|t Mol. Biol. Evol.
|v 37
|y 2020
999 C 5 |a 10.1093/molbev/msx281
|9 -- missing cx lookup --
|1 Hoang
|p 518 -
|2 Crossref
|t Mol. Biol. Evol.
|v 35
|y 2018
999 C 5 |a 10.1038/nmeth.4285
|9 -- missing cx lookup --
|1 Kalyaanamoorthy
|p 587 -
|2 Crossref
|t Nat. Methods
|v 14
|y 2017
999 C 5 |a 10.1093/nar/gkab301
|9 -- missing cx lookup --
|1 Letunic
|p W293 -
|2 Crossref
|t Nucleic Acids Res.
|v 49
|y 2021
999 C 5 |a 10.1007/978-1-4939-7240-1_19
|9 -- missing cx lookup --
|1 Zhou
|p 245 -
|2 Crossref
|t Methods Mol. Biol.
|v 1657
|y 2017
999 C 5 |a 10.1093/nar/gkad662
|9 -- missing cx lookup --
|1 Myers
|p 9804 -
|2 Crossref
|t Nucleic Acids Res.
|v 51
|y 2023
999 C 5 |a 10.1093/nar/gkac1091
|9 -- missing cx lookup --
|1 Weiss
|p 12369 -
|2 Crossref
|t Nucleic Acids Res.
|v 50
|y 2022
999 C 5 |a 10.1093/nar/gkab776
|9 -- missing cx lookup --
|1 Parks
|p D785 -
|2 Crossref
|t Nucleic Acids Res.
|v 50
|y 2022
999 C 5 |a 10.1107/S0907444910007493
|9 -- missing cx lookup --
|1 Emsley
|p 486 -
|2 Crossref
|t Acta Crystallogr. D Biol. Crystallogr.
|v 66
|y 2010
999 C 5 |1 Yang
|y 2022
|2 Crossref
|o Yang 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21