Home > Publications database > Diribonuclease activity eliminates toxic diribonucleotide accumulation > print |
001 | 613927 | ||
005 | 20250715171228.0 | ||
024 | 7 | _ | |a 10.1016/j.celrep.2024.114759 |2 doi |
024 | 7 | _ | |a 2211-1247 |2 ISSN |
024 | 7 | _ | |a 2639-1856 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-05706 |2 datacite_doi |
024 | 7 | _ | |a 39276351 |2 pmid |
024 | 7 | _ | |a WOS:001318568400001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4402509098 |
037 | _ | _ | |a PUBDB-2024-05706 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kim, Soo-Kyoung |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Diribonuclease activity eliminates toxic diribonucleotide accumulation |
260 | _ | _ | |a [New York, NY] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1727682785_477454 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a RNA degradation is a central process in cells, which is vital for transcriptional regulation. The degradation process is initiated by endoribonucleolytic fragmentation of long RNA polymers, followed by exoribonucleolytic cleavage to release mononucleotides from the fragment ends. In this process, the degradation of short oligonucleotides, especially diribonucleotides, into mononucleotides requires specific enzymatic activity, which in Gram-negative bacteria is provided by oligoribonuclease (Orn). Orn is unique in that it is the only essential exoribonuclease in Escherichia coli. Recent studies have shown that Orn cleaves only diribonucleotides under physiological conditions, suggesting that the accumulation of dinucleotides poisons cells. Yet, related organisms, such as Pseudomonas aeruginosa, display a growth defect but are viable without Orn, contesting its essentiality. Here, we took advantage of P. aeruginosa orn mutants to elucidate the mechanisms of their survival. Genetic screening for suppressors that restored colony morphology identified yciV. Purified YciV exhibited diribonuclease activity. YciV is present in all $\gamma$-proteobacteria, suggesting that the enzyme from P. aeruginosa is distinct from its E. coli ortholog. Phylogenetic analysis revealed differences between the two orthologs that were mapped to the active site of the enzyme and correlated with differences in substrate profiles. The expression of P. aeruginosa YciV in E. coli eliminated the necessity of orn. Similarly, the deletion of yciV from P. aeruginosa caused orn to become essential. Together, these results show that diribonuclease activity is required in $\gamma$-proteobacteria and that diribonucleotides may be utilized to monitor the efficacy of RNA degradation. Because Orn is found in higher eukaryotes, these observations indicate a conserved mechanism for monitoring RNA degradation. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
542 | _ | _ | |i 2024-09-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2024-09-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
542 | _ | _ | |i 2024-08-29 |2 Crossref |u http://creativecommons.org/licenses/by-nc-nd/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P11 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P11-20150101 |6 EXP:(DE-H253)P-P11-20150101 |x 0 |
700 | 1 | _ | |a Orr, Mona |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Turdiev, Husan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Jenkins, Conor |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lormand, Justin David |0 P:(DE-H253)PIP1099916 |b 4 |
700 | 1 | _ | |a Myers, Tanner |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Burnim, Audrey |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Carter, Jared |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Husseini, Nour El |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Kung, Warren |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Jiang, Xiaofang |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Sondermann, Holger |0 P:(DE-H253)PIP1093629 |b 11 |
700 | 1 | _ | |a Winkler, Wade |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Lee, Vincent |0 P:(DE-HGF)0 |b 13 |e Corresponding author |
773 | 1 | 8 | |a 10.1016/j.celrep.2024.114759 |b Elsevier BV |d 2024-09-01 |n 9 |p 114759 |3 journal-article |2 Crossref |t Cell Reports |v 43 |y 2024 |x 2211-1247 |
773 | _ | _ | |a 10.1016/j.celrep.2024.114759 |g Vol. 43, no. 9, p. 114759 - |0 PERI:(DE-600)2649101-1 |n 9 |p 114759 |t Cell reports |v 43 |y 2024 |x 2211-1247 |
856 | 4 | _ | |y OpenAccess |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/613927/files/Dinuclease%20essentiality_HS2.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/613927/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/613927/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/613927/files/Figures%201-8%20and%20supplemental.pdf |
856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/613927/files/Final_PDF_Cell_Reports.pdf |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/613927/files/Figures%201-8%20and%20supplemental.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/613927/files/Final_PDF_Cell_Reports.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/613927/files/Dinuclease%20essentiality_HS2.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:613927 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1099916 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 4 |6 P:(DE-H253)PIP1099916 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1093629 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 11 |6 P:(DE-H253)PIP1093629 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:49:39Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP : 2022 |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELL REP : 2022 |d 2024-12-16 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-DESY-HS-20210521 |k CSSB-DESY-HS |l Strukturelle Mikrobiologie CSSB |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-DESY-HS-20210521 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1152/ajplegacy.1920.52.1.203 |9 -- missing cx lookup -- |1 Jones |p 203 - |2 Crossref |t Am. J. Physiol. |v 52 |y 1920 |
999 | C | 5 | |a 10.1016/S0021-9258(19)40946-0 |9 -- missing cx lookup -- |1 Datta |p 7313 - |2 Crossref |t J. Biol. Chem. |v 250 |y 1975 |
999 | C | 5 | |a 10.1016/S0021-9258(19)40945-9 |9 -- missing cx lookup -- |1 Niyogi |p 7307 - |2 Crossref |t J. Biol. Chem. |v 250 |y 1975 |
999 | C | 5 | |a 10.1016/0006-291X(67)90520-7 |9 -- missing cx lookup -- |1 Stevens |p 550 - |2 Crossref |t Biochem. Biophys. Res. Commun. |v 29 |y 1967 |
999 | C | 5 | |a 10.1093/nar/gkj472 |9 -- missing cx lookup -- |1 Deutscher |p 659 - |2 Crossref |t Nucleic Acids Res. |v 34 |y 2006 |
999 | C | 5 | |a 10.1016/j.mib.2007.05.008 |9 -- missing cx lookup -- |1 Condon |p 271 - |2 Crossref |t Curr. Opin. Microbiol. |v 10 |y 2007 |
999 | C | 5 | |a 10.1111/j.1574-6976.2010.00242.x |9 -- missing cx lookup -- |1 Arraiano |p 883 - |2 Crossref |t FEMS Microbiol. Rev. |v 34 |y 2010 |
999 | C | 5 | |a 10.1146/annurev-genet-120213-092340 |9 -- missing cx lookup -- |1 Hui |p 537 - |2 Crossref |t Annu. Rev. Genet. |v 48 |y 2014 |
999 | C | 5 | |a 10.1038/nrm2917 |9 -- missing cx lookup -- |1 Belasco |p 467 - |2 Crossref |t Nat. Rev. Mol. Cell Biol. |v 11 |y 2010 |
999 | C | 5 | |a 10.1073/pnas.96.8.4372 |9 -- missing cx lookup -- |1 Ghosh |p 4372 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 96 |y 1999 |
999 | C | 5 | |a 10.1038/325279a0 |9 -- missing cx lookup -- |1 Ross |p 279 - |2 Crossref |t Nature |v 325 |y 1987 |
999 | C | 5 | |a 10.1021/bi0100236 |9 -- missing cx lookup -- |1 Chang |p 3420 - |2 Crossref |t Biochemistry |v 40 |y 2001 |
999 | C | 5 | |a 10.1073/pnas.1421450112 |9 -- missing cx lookup -- |1 Cohen |p 11359 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 112 |y 2015 |
999 | C | 5 | |a 10.1073/pnas.1507245112 |9 -- missing cx lookup -- |1 Orr |p E5048 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 112 |y 2015 |
999 | C | 5 | |a 10.1073/pnas.0511100103 |9 -- missing cx lookup -- |1 Liberati |p 2833 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 103 |y 2006 |
999 | C | 5 | |a 10.1128/JB.00300-18 |1 Orr |9 -- missing cx lookup -- |2 Crossref |t J. Bacteriol. |v 200 |y 2018 |
999 | C | 5 | |a 10.7554/eLife.46313 |1 Kim |9 -- missing cx lookup -- |2 Crossref |t Elife |v 8 |y 2019 |
999 | C | 5 | |a 10.1111/j.1365-2958.2004.04402.x |9 -- missing cx lookup -- |1 Kulasekara |p 368 - |2 Crossref |t Mol. Microbiol. |v 55 |y 2005 |
999 | C | 5 | |a 10.1021/acs.biochem.5b00192 |9 -- missing cx lookup -- |1 Ghodge |p 2911 - |2 Crossref |t Biochemistry |v 54 |y 2015 |
999 | C | 5 | |a 10.1073/pnas.98.1.37 |9 -- missing cx lookup -- |1 Jean |p 37 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 98 |y 2001 |
999 | C | 5 | |a 10.1128/mBio.01385-14 |1 Palace |9 -- missing cx lookup -- |2 Crossref |t mBio |v 5 |y 2014 |
999 | C | 5 | |a 10.1371/journal.ppat.1003800 |1 Kamp |9 -- missing cx lookup -- |2 Crossref |t PLoS Pathog. |v 9 |y 2013 |
999 | C | 5 | |a 10.1093/nar/gkac617 |9 -- missing cx lookup -- |1 Sharma |p 8807 - |2 Crossref |t Nucleic Acids Res. |v 50 |y 2022 |
999 | C | 5 | |a 10.1021/bi401640r |9 -- missing cx lookup -- |1 Cummings |p 591 - |2 Crossref |t Biochemistry |v 53 |y 2014 |
999 | C | 5 | |a 10.1038/s41587-023-01773-0 |9 -- missing cx lookup -- |1 van Kempen |p 243 - |2 Crossref |t Nat. Biotechnol. |v 42 |y 2024 |
999 | C | 5 | |a 10.1002/prot.23035 |9 -- missing cx lookup -- |1 Han |p 2146 - |2 Crossref |t Proteins |v 79 |y 2011 |
999 | C | 5 | |1 Corso |y 2024 |2 Crossref |o Corso 2024 |
999 | C | 5 | |1 Corso |y 2023 |2 Crossref |o Corso 2023 |
999 | C | 5 | |a 10.7554/eLife.70146 |1 Lormand |9 -- missing cx lookup -- |2 Crossref |t Elife |v 10 |y 2021 |
999 | C | 5 | |a 10.1038/s41586-021-03819-2 |9 -- missing cx lookup -- |1 Jumper |p 583 - |2 Crossref |t Nature |v 596 |y 2021 |
999 | C | 5 | |a 10.1038/s41592-022-01488-1 |9 -- missing cx lookup -- |1 Mirdita |p 679 - |2 Crossref |t Nat. Methods |v 19 |y 2022 |
999 | C | 5 | |a 10.1073/pnas.100127597 |9 -- missing cx lookup -- |1 Yu |p 5978 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 97 |y 2000 |
999 | C | 5 | |a 10.1016/S0378-1119(00)00071-8 |9 -- missing cx lookup -- |1 Murphy |p 321 - |2 Crossref |t Gene |v 246 |y 2000 |
999 | C | 5 | |a 10.1073/pnas.120163297 |9 -- missing cx lookup -- |1 Datsenko |p 6640 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 97 |y 2000 |
999 | C | 5 | |a 10.1128/ecosal.5.2.3 |1 Bremer |9 -- missing cx lookup -- |2 Crossref |t EcoSal Plus |v 3 |y 2008 |
999 | C | 5 | |a 10.1016/j.talanta.2019.120161 |1 Zbornikova |9 -- missing cx lookup -- |2 Crossref |t Talanta |v 205 |y 2019 |
999 | C | 5 | |a 10.1038/s41598-017-10988-6 |1 Varik |9 -- missing cx lookup -- |2 Crossref |t Sci. Rep. |v 7 |y 2017 |
999 | C | 5 | |a 10.1093/nar/gkaa260 |9 -- missing cx lookup -- |1 Jain |p 5616 - |2 Crossref |t Nucleic Acids Res. |v 48 |y 2020 |
999 | C | 5 | |a 10.1080/15476286.2021.2000793 |9 -- missing cx lookup -- |1 Shatoff |p 856 - |2 Crossref |t RNA Biol. |v 18 |y 2021 |
999 | C | 5 | |a 10.1038/msb.2011.58 |9 -- missing cx lookup -- |1 Christen |p 528 - |2 Crossref |t Mol. Syst. Biol. |v 7 |y 2011 |
999 | C | 5 | |a 10.1099/mic.0.054619-0 |9 -- missing cx lookup -- |1 Liu |p 886 - |2 Crossref |t Microbiology |v 158 |y 2012 |
999 | C | 5 | |a 10.1128/IAI.00312-18 |1 Sternon |9 -- missing cx lookup -- |2 Crossref |t Infect. Immun. |v 86 |y 2018 |
999 | C | 5 | |a 10.1371/journal.pgen.1005348 |1 Druzhinin |9 -- missing cx lookup -- |2 Crossref |t PLoS Genet. |v 11 |y 2015 |
999 | C | 5 | |a 10.1016/j.molcel.2011.06.005 |9 -- missing cx lookup -- |1 Goldman |p 817 - |2 Crossref |t Mol. Cell |v 42 |y 2011 |
999 | C | 5 | |a 10.1073/pnas.2106388118 |1 Skalenko |9 -- missing cx lookup -- |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 118 |y 2021 |
999 | C | 5 | |a 10.1128/JB.180.10.2779-2781.1998 |9 -- missing cx lookup -- |1 Zhang |p 2779 - |2 Crossref |t J. Bacteriol. |v 180 |y 1998 |
999 | C | 5 | |a 10.1371/journal.pone.0064670 |1 Bruni |9 -- missing cx lookup -- |2 Crossref |t PLoS One |v 8 |y 2013 |
999 | C | 5 | |a 10.1126/science.7604262 |9 -- missing cx lookup -- |1 Rahme |p 1899 - |2 Crossref |t Science |v 268 |y 1995 |
999 | C | 5 | |a 10.1128/JB.180.8.2063-2071.1998 |9 -- missing cx lookup -- |1 Murphy |p 2063 - |2 Crossref |t J. Bacteriol. |v 180 |y 1998 |
999 | C | 5 | |a 10.1111/j.1365-2958.2007.05879.x |9 -- missing cx lookup -- |1 Lee |p 1474 - |2 Crossref |t Mol. Microbiol. |v 65 |y 2007 |
999 | C | 5 | |a 10.1016/0378-1119(86)90358-6 |9 -- missing cx lookup -- |1 Furste |p 119 - |2 Crossref |t Gene |v 48 |y 1986 |
999 | C | 5 | |a 10.7554/eLife.46313 |1 Kim |9 -- missing cx lookup -- |2 Crossref |t Elife |v 8 |y 2019 |
999 | C | 5 | |a 10.1038/nmeth.2019 |9 -- missing cx lookup -- |1 Schindelin |p 676 - |2 Crossref |t Nat. Methods |v 9 |y 2012 |
999 | C | 5 | |a 10.1107/S0907444909047337 |9 -- missing cx lookup -- |1 Kabsch |p 125 - |2 Crossref |t Acta Crystallogr. D Biol. Crystallogr. |v 66 |y 2010 |
999 | C | 5 | |a 10.1107/S2059798319011471 |9 -- missing cx lookup -- |1 Liebschner |p 861 - |2 Crossref |t Acta Crystallogr. D Struct. Biol. |v 75 |y 2019 |
999 | C | 5 | |a 10.1093/bioinformatics/btu153 |9 -- missing cx lookup -- |1 Seemann |p 2068 - |2 Crossref |t Bioinformatics |v 30 |y 2014 |
999 | C | 5 | |a 10.1093/molbev/msab293 |9 -- missing cx lookup -- |1 Cantalapiedra |p 5825 - |2 Crossref |t Mol. Biol. Evol. |v 38 |y 2021 |
999 | C | 5 | |a 10.1093/bioinformatics/btu031 |9 -- missing cx lookup -- |1 Jones |p 1236 - |2 Crossref |t Bioinformatics |v 30 |y 2014 |
999 | C | 5 | |a 10.1093/bioinformatics/btq003 |9 -- missing cx lookup -- |1 Huang |p 680 - |2 Crossref |t Bioinformatics |v 26 |y 2010 |
999 | C | 5 | |a 10.1038/msb.2011.75 |9 -- missing cx lookup -- |1 Sievers |p 539 - |2 Crossref |t Mol. Syst. Biol. |v 7 |y 2011 |
999 | C | 5 | |a 10.1093/molbev/msaa015 |9 -- missing cx lookup -- |1 Minh |p 1530 - |2 Crossref |t Mol. Biol. Evol. |v 37 |y 2020 |
999 | C | 5 | |a 10.1093/molbev/msx281 |9 -- missing cx lookup -- |1 Hoang |p 518 - |2 Crossref |t Mol. Biol. Evol. |v 35 |y 2018 |
999 | C | 5 | |a 10.1038/nmeth.4285 |9 -- missing cx lookup -- |1 Kalyaanamoorthy |p 587 - |2 Crossref |t Nat. Methods |v 14 |y 2017 |
999 | C | 5 | |a 10.1093/nar/gkab301 |9 -- missing cx lookup -- |1 Letunic |p W293 - |2 Crossref |t Nucleic Acids Res. |v 49 |y 2021 |
999 | C | 5 | |a 10.1007/978-1-4939-7240-1_19 |9 -- missing cx lookup -- |1 Zhou |p 245 - |2 Crossref |t Methods Mol. Biol. |v 1657 |y 2017 |
999 | C | 5 | |a 10.1093/nar/gkad662 |9 -- missing cx lookup -- |1 Myers |p 9804 - |2 Crossref |t Nucleic Acids Res. |v 51 |y 2023 |
999 | C | 5 | |a 10.1093/nar/gkac1091 |9 -- missing cx lookup -- |1 Weiss |p 12369 - |2 Crossref |t Nucleic Acids Res. |v 50 |y 2022 |
999 | C | 5 | |a 10.1093/nar/gkab776 |9 -- missing cx lookup -- |1 Parks |p D785 - |2 Crossref |t Nucleic Acids Res. |v 50 |y 2022 |
999 | C | 5 | |a 10.1107/S0907444910007493 |9 -- missing cx lookup -- |1 Emsley |p 486 - |2 Crossref |t Acta Crystallogr. D Biol. Crystallogr. |v 66 |y 2010 |
999 | C | 5 | |1 Yang |y 2022 |2 Crossref |o Yang 2022 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|