Home > Publications database > Efficient axonal transport of endolysosomes relies on the balanced ratio of microtubule tyrosination and detyrosination > print |
001 | 613880 | ||
005 | 20250723172322.0 | ||
024 | 7 | _ | |a 10.1242/jcs.261737 |2 doi |
024 | 7 | _ | |a 0370-2952 |2 ISSN |
024 | 7 | _ | |a 0021-9533 |2 ISSN |
024 | 7 | _ | |a 1477-9137 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-05659 |2 datacite_doi |
024 | 7 | _ | |a altmetric:161149505 |2 altmetric |
024 | 7 | _ | |a pmid:38525600 |2 pmid |
024 | 7 | _ | |a WOS:001266917100004 |2 WOS |
024 | 7 | _ | |a openalex:W4393150410 |2 openalex |
037 | _ | _ | |a PUBDB-2024-05659 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Konietzny, Anja |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Efficient axonal transport of endolysosomes relies on the balanced ratio of microtubule tyrosination and detyrosination |
260 | _ | _ | |a Cambridge |c 2024 |b Company of Biologists Limited |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1729071084_2611816 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In neurons, the microtubule (MT) cytoskeleton forms the basis for long-distance protein transport from the cell body into and out of dendrites and axons. To maintain neuronal polarity, the axon initial segment (AIS) serves as a physical barrier, separating the axon from the somatodendritic compartment and acting as a filter for axonal cargo. Selective trafficking is further instructed by axonal enrichment of MT post-translational modifications, which affect MT dynamics and the activity of motor proteins. Here, we compared two knockout mouse lines lacking the respective enzymes for MT tyrosination and detyrosination, and found that both knockouts led to a shortening of the AIS. Neurons from both lines also showed an increased immobile fraction of endolysosomes present in the axon, whereas mobile organelles displayed shortened run distances in the retrograde direction. Overall, our results highlight the importance of maintaining the balance of tyrosinated and detyrosinated MTs for proper AIS length and axonal transport processes. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)390688087 - EXC 2049: Comprehensive approaches to neurological and psychiatric disorders "NeuroCure" (390688087) |0 G:(GEPRIS)390688087 |c 390688087 |x 1 |
542 | _ | _ | |i 2024-04-30 |2 Crossref |u http://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to DataCite |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Han, Yuhao |0 P:(DE-H253)PIP1093833 |b 1 |
700 | 1 | _ | |a Popp, Yannes |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a van Bommel, Bas |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Sharma, Aditi |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Delagrange, Philippe |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Arbez, Nicolas |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Moutin, Marie-Jo |0 0000-0003-2681-9818 |b 7 |
700 | 1 | _ | |a Peris, Leticia |0 0000-0002-0668-1252 |b 8 |
700 | 1 | _ | |a Mikhaylova, Marina |0 P:(DE-H253)PIP1098790 |b 9 |e Corresponding author |
773 | 1 | 8 | |a 10.1242/jcs.261737 |b The Company of Biologists |d 2024-04-15 |n 8 |3 journal-article |2 Crossref |t Journal of Cell Science |v 137 |y 2024 |x 0021-9533 |
773 | _ | _ | |a 10.1242/jcs.261737 |g Vol. 137, no. 8, p. jcs261737 |0 PERI:(DE-600)1483099-1 |n 8 |p jcs261737 |t Journal of cell science |v 137 |y 2024 |x 0021-9533 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/613880/files/jcs261737.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/613880/files/jcs261737.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:613880 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 1 |6 P:(DE-H253)PIP1093833 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1093833 |
910 | 1 | _ | |a European Molecular Biology Laboratory |0 I:(DE-588b)235011-7 |k EMBL |b 9 |6 P:(DE-H253)PIP1098790 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1098790 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CELL SCI : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-LIV-KG-20220525 |k CSSB-LIV-KG |l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) - Kay Grünewald |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-LIV-KG-20220525 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1126/science.aao4165 |9 -- missing cx lookup -- |1 Aillaud |p 1448 - |2 Crossref |t Science |v 358 |y 2017 |
999 | C | 5 | |a 10.1371/journal.pbio.1000216 |9 -- missing cx lookup -- |1 Cai |p e1000216 - |2 Crossref |t PLoS Biol. |v 7 |y 2009 |
999 | C | 5 | |a 10.1083/jcb.202010179 |9 -- missing cx lookup -- |1 Cason |p e202010179 - |2 Crossref |t J. Cell Biol. |v 220 |y 2021 |
999 | C | 5 | |a 10.1080/15548627.2018.1482147 |9 -- missing cx lookup -- |1 Cheng |p 1472 - |2 Crossref |t Autophagy |v 14 |y 2018 |
999 | C | 5 | |a 10.1523/jneurosci.08-04-01454.1988 |9 -- missing cx lookup -- |1 Dotti |p 1454 - |2 Crossref |t J. Neurosci. |v 8 |y 1988 |
999 | C | 5 | |a 10.1242/jcs.026492 |9 -- missing cx lookup -- |1 Dunn |p 1085 - |2 Crossref |t J. Cell Sci. |v 121 |y 2008 |
999 | C | 5 | |a 10.1073/pnas.0409626102 |9 -- missing cx lookup -- |1 Erck |p 7853 - |2 Crossref |t Proc. Natl. Acad. Sci. U.S.A. |v 102 |y 2005 |
999 | C | 5 | |a 10.1083/jcb.120.3.725 |9 -- missing cx lookup -- |1 Ersfeld |p 725 - |2 Crossref |t J. Cell Biol. |v 120 |y 1993 |
999 | C | 5 | |a 10.1016/j.celrep.2015.09.066 |9 -- missing cx lookup -- |1 Evans |p 1233 - |2 Crossref |t Cell Rep. |v 13 |y 2015 |
999 | C | 5 | |a 10.1016/j.celrep.2019.06.013 |9 -- missing cx lookup -- |1 Farfel-Becker |p 51 - |2 Crossref |t Cell Rep. |v 28 |y 2019 |
999 | C | 5 | |a 10.1080/15548627.2019.1669869 |9 -- missing cx lookup -- |1 Farfel-Becker |p 167 - |2 Crossref |t Autophagy |v 16 |y 2020 |
999 | C | 5 | |a 10.1073/pnas.1616363114 |9 -- missing cx lookup -- |1 Farías |p E2955 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 114 |y 2017 |
999 | C | 5 | |a 10.1091/MBC.E19-09-0495 |9 -- missing cx lookup -- |1 Feng |p 782 - |2 Crossref |t Mol. Biol. Cell |v 31 |y 2020 |
999 | C | 5 | |a 10.1091/mbc.E20-06-0382 |9 -- missing cx lookup -- |1 Gowrishankar |p 1094 - |2 Crossref |t Mol. Biol. Cell |v 32 |y 2021 |
999 | C | 5 | |a 10.1038/nature09160 |9 -- missing cx lookup -- |1 Grubb |p 1070 - |2 Crossref |t Nature |v 465 |y 2010 |
999 | C | 5 | |a 10.1523/JNEUROSCI.5221-12.2013 |9 -- missing cx lookup -- |1 Gumy |p 11329 - |2 Crossref |t J. Neurosci. |v 33 |y 2013 |
999 | C | 5 | |a 10.1016/j.jim.2006.07.027 |9 -- missing cx lookup -- |1 Haan |p 11 - |2 Crossref |t J. Immunol. Methods |v 318 |y 2007 |
999 | C | 5 | |a 10.1101/2023.09.14.557747 |9 -- missing cx lookup -- |1 Han |p 2023.09.14.557747 - |2 Crossref |t BioRxiv |y 2023 |
999 | C | 5 | |a 10.1074/jbc.M003132200 |9 -- missing cx lookup -- |1 Homma |p 34766 - |2 Crossref |t J. Biol. Chem. |v 275 |y 2000 |
999 | C | 5 | |a 10.3389/fnmol.2022.931859 |9 -- missing cx lookup -- |1 Hosseini |p 931859 - |2 Crossref |t Front. Mol. Neurosci. |v 15 |y 2022 |
999 | C | 5 | |a 10.1016/j.celrep.2019.07.093 |9 -- missing cx lookup -- |1 Ichinose |p 2413 - |2 Crossref |t Cell Rep. |v 28 |y 2019 |
999 | C | 5 | |a 10.7554/eLife.42288 |9 -- missing cx lookup -- |1 Jakobs |p e42288 - |2 Crossref |t eLife, |v 8 |y 2019 |
999 | C | 5 | |a 10.1016/j.tins.2010.05.001 |9 -- missing cx lookup -- |1 Janke |p 362 - |2 Crossref |t Trends Neurosci. |v 33 |y 2010 |
999 | C | 5 | |a 10.1038/s41467-022-28952-y |9 -- missing cx lookup -- |1 Keren-Kaplan |p 1506 - |2 Crossref |t Nat. Commun. |v 13 |y 2022 |
999 | C | 5 | |a 10.1038/nn.2314 |9 -- missing cx lookup -- |1 Konishi |p 559 - |2 Crossref |t Nat. Neurosci. |v 12 |y 2009 |
999 | C | 5 | |a 10.1016/j.celrep.2015.11.051 |9 -- missing cx lookup -- |1 Leterrier |p 2781 - |2 Crossref |t Cell Rep. |v 13 |y 2015 |
999 | C | 5 | |a 10.1016/j.cell.2019.08.050 |9 -- missing cx lookup -- |1 Liao |p 147 - |2 Crossref |t Cell |v 179 |y 2019 |
999 | C | 5 | |a 10.1016/j.celrep.2021.109034 |9 -- missing cx lookup -- |1 Lie |p 109034 - |2 Crossref |t Cell Rep. |v 35 |y 2021 |
999 | C | 5 | |a 10.15252/embj.201593071 |9 -- missing cx lookup -- |1 McKenney |p 1175 - |2 Crossref |t EMBO J. |v 35 |y 2016 |
999 | C | 5 | |a 10.1016/j.neuron.2017.01.022 |9 -- missing cx lookup -- |1 Menzies |p 1015 - |2 Crossref |t Neuron |v 93 |y 2017 |
999 | C | 5 | |a 10.1083/jcb.201807124 |9 -- missing cx lookup -- |1 Mohan |p 632 - |2 Crossref |t J. Cell Biol. |v 218 |y 2019 |
999 | C | 5 | |a 10.1016/j.devcel.2020.01.029 |9 -- missing cx lookup -- |1 Monroy |p 60 - |2 Crossref |t Dev. Cell |v 53 |y 2020 |
999 | C | 5 | |a 10.1002/dneu.22774 |9 -- missing cx lookup -- |1 Moutin |p 253 - |2 Crossref |t Dev. Neurobiol. |v 81 |y 2021 |
999 | C | 5 | |a 10.1038/ncb1009 |9 -- missing cx lookup -- |1 Nakada |p 626 - |2 Crossref |t Nat. Cell Biol. |v 5 |y 2003 |
999 | C | 5 | |a 10.1016/j.tcb.2022.04.012 |9 -- missing cx lookup -- |1 Napolitano |p 920 - |2 Crossref |t Trends Cell Biol. |v 32 |y 2022 |
999 | C | 5 | |a 10.1111/bpa.13071 |9 -- missing cx lookup -- |1 Ni |p e13071 - |2 Crossref |t Brain Pathol. |v 32 |y 2022 |
999 | C | 5 | |a 10.1016/j.celrep.2016.02.046 |9 -- missing cx lookup -- |1 Nirschl |p 2637 - |2 Crossref |t Cell Rep. |v 14 |y 2016 |
999 | C | 5 | |a 10.1093/hmg/ddz186 |9 -- missing cx lookup -- |1 Pagnamenta |p 3391 - |2 Crossref |t Hum. Mol. Genet. |v 28 |y 2019 |
999 | C | 5 | |a 10.1016/j.conb.2018.03.001 |9 -- missing cx lookup -- |1 Park |p 95 - |2 Crossref |t Curr. Opin. Neurobiol. |v 51 |y 2018 |
999 | C | 5 | |a 10.1083/jcb.200512058 |9 -- missing cx lookup -- |1 Peris |p 839 - |2 Crossref |t J. Cell Biol. |v 174 |y 2006 |
999 | C | 5 | |a 10.1083/jcb.200902142 |9 -- missing cx lookup -- |1 Peris |p 1159 - |2 Crossref |t J. Cell Biol. |v 185 |y 2009 |
999 | C | 5 | |a 10.1093/brain/awab436 |9 -- missing cx lookup -- |1 Peris |p 2486 - |2 Crossref |t Brain |v 145 |y 2022 |
999 | C | 5 | |a 10.1523/JNEUROSCI.3779-13.2014 |9 -- missing cx lookup -- |1 Petersen |p 4135 - |2 Crossref |t J. Neurosci. |v 34 |y 2014 |
999 | C | 5 | |a 10.1016/j.nbd.2018.03.008 |9 -- missing cx lookup -- |1 Pitcairn |p 72 - |2 Crossref |t Neurobiol. Dis. |v 122 |y 2019 |
999 | C | 5 | |a 10.1083/jcb.202111077 |9 -- missing cx lookup -- |1 Roney |p e202111077 - |2 Crossref |t J. Cell Biol. |v 221 |y 2022 |
999 | C | 5 | |a 10.1016/j.nbd.2021.105360 |9 -- missing cx lookup -- |1 Root |p 105360 - |2 Crossref |t Neurobiol. Dis. |v 154 |y 2021 |
999 | C | 5 | |a 10.1016/j.semcdb.2021.12.006 |9 -- missing cx lookup -- |1 Sanyal |p 46 - |2 Crossref |t Semin. Cell Dev. Biol. |v 137 |y 2023 |
999 | C | 5 | |a 10.1016/j.cell.2009.01.016 |9 -- missing cx lookup -- |1 Song |p 1148 - |2 Crossref |t Cell |v 136 |y 2009 |
999 | C | 5 | |a 10.1016/j.neuron.2017.11.018 |9 -- missing cx lookup -- |1 Tas |p 1264 - |2 Crossref |t Neuron |v 96 |y 2017 |
999 | C | 5 | |a 10.1016/j.neuron.2015.11.012 |9 -- missing cx lookup -- |1 van Beuningen |p 1208 - |2 Crossref |t Neuron |v 88 |y 2015 |
999 | C | 5 | |a 10.15252/embj.2018101183 |9 -- missing cx lookup -- |1 van Bommel |p 1 - |2 Crossref |t EMBO J. |v 38 |y 2019 |
999 | C | 5 | |a 10.1038/s41467-019-13835-6 |9 -- missing cx lookup -- |1 Vassilopoulos |p 5803 - |2 Crossref |t Nat. Commun. |v 10 |y 2019 |
999 | C | 5 | |a 10.1016/j.conb.2017.09.005 |9 -- missing cx lookup -- |1 Wang |p 52 - |2 Crossref |t Curr. Opin. Neurobiol. |v 48 |y 2018 |
999 | C | 5 | |a 10.1016/j.celrep.2012.11.015 |9 -- missing cx lookup -- |1 Watanabe |p 1546 - |2 Crossref |t Cell Rep. |v 2 |y 2012 |
999 | C | 5 | |a 10.1073/pnas.1909989116 |9 -- missing cx lookup -- |1 Yang |p 19717 - |2 Crossref |t Proc. Natl. Acad. Sci. USA |v 116 |y 2019 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|