000613831 001__ 613831
000613831 005__ 20250723172323.0
000613831 0247_ $$2doi$$a10.1016/j.jsb.2024.108067
000613831 0247_ $$2ISSN$$a1047-8477
000613831 0247_ $$2ISSN$$a1095-8657
000613831 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05637
000613831 0247_ $$2pmid$$a38367824
000613831 0247_ $$2WOS$$aWOS:001205861300001
000613831 0247_ $$2openalex$$aopenalex:W4391848590
000613831 037__ $$aPUBDB-2024-05637
000613831 041__ $$aEnglish
000613831 082__ $$a540
000613831 1001_ $$0P:(DE-H253)PIP1097407$$aSiggel, Marc$$b0
000613831 245__ $$aColabSeg: An interactive tool for editing, processing, and visualizing membrane segmentations from cryo-ET data
000613831 260__ $$aSan Diego, Calif.$$bElsevier$$c2024
000613831 3367_ $$2DRIVER$$aarticle
000613831 3367_ $$2DataCite$$aOutput Types/Journal article
000613831 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728900181_4051395
000613831 3367_ $$2BibTeX$$aARTICLE
000613831 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000613831 3367_ $$00$$2EndNote$$aJournal Article
000613831 520__ $$aCellular cryo-electron tomography (cryo-ET) has emerged as a key method to unravel the spatial and structural complexity of cells in their near-native state at unprecedented molecular resolution. To enable quantitative analysis of the complex shapes and morphologies of lipid membranes, the noisy three-dimensional (3D) volumes must be segmented. Despite recent advances, this task often requires considerable user intervention to curate the resulting segmentations. Here, we present ColabSeg, a Python-based tool for processing, visualizing, editing, and fitting membrane segmentations from cryo-ET data for downstream analysis. ColabSeg makes many well-established algorithms for point-cloud processing easily available to the broad community of structural biologists for applications in cryo-ET through its graphical user interface (GUI). We demonstrate the usefulness of the tool with a range of use cases and biological examples. Finally, for a large Mycoplasma pneumoniae dataset of 50 tomograms, we show how ColabSeg enables high-throughput membrane segmentation, which can be used as valuable training data for fully automated convolutional neural network (CNN)-based segmentation. 
000613831 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000613831 542__ $$2Crossref$$i2024-06-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000613831 542__ $$2Crossref$$i2024-02-04$$uhttp://creativecommons.org/licenses/by/4.0/
000613831 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000613831 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000613831 7001_ $$0P:(DE-H253)PIP1026373$$aJensen, Rasmus K.$$b1
000613831 7001_ $$0P:(DE-H253)PIP1094157$$aMaurer, Valentin J.$$b2
000613831 7001_ $$0P:(DE-HGF)0$$aMahamid, Julia$$b3
000613831 7001_ $$0P:(DE-H253)PIP1081584$$aKosinski, Jan$$b4$$eCorresponding author
000613831 77318 $$2Crossref$$3journal-article$$a10.1016/j.jsb.2024.108067$$bElsevier BV$$d2024-06-01$$n2$$p108067$$tJournal of Structural Biology$$v216$$x1047-8477$$y2024
000613831 773__ $$0PERI:(DE-600)1469822-5$$a10.1016/j.jsb.2024.108067$$gVol. 216, no. 2, p. 108067 -$$n2$$p108067$$tJournal of structural biology$$v216$$x1047-8477$$y2024
000613831 8564_ $$uhttps://bib-pubdb1.desy.de/record/613831/files/1-s2.0-S1047847724000078-main.pdf$$yOpenAccess
000613831 8564_ $$uhttps://bib-pubdb1.desy.de/record/613831/files/1-s2.0-S1047847724000078-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000613831 909CO $$ooai:bib-pubdb1.desy.de:613831$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000613831 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097407$$aExternal Institute$$b0$$kExtern
000613831 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1026373$$aEuropean Molecular Biology Laboratory$$b1$$kEMBL
000613831 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026373$$aExternal Institute$$b1$$kExtern
000613831 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1094157$$aCentre for Structural Systems Biology$$b2$$kCSSB
000613831 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1081584$$aCentre for Structural Systems Biology$$b4$$kCSSB
000613831 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000613831 9141_ $$y2024
000613831 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000613831 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000613831 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000613831 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000613831 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000613831 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
000613831 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STRUCT BIOL : 2022$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000613831 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
000613831 9201_ $$0I:(DE-H253)CSSB-EMBL-JK-20210701$$kCSSB-EMBL-JK$$lCSSB-EMBL-JK$$x0
000613831 980__ $$ajournal
000613831 980__ $$aVDB
000613831 980__ $$aUNRESTRICTED
000613831 980__ $$aI:(DE-H253)CSSB-EMBL-JK-20210701
000613831 9801_ $$aFullTexts
000613831 999C5 $$1Barad$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.202204093$$tJ. Cell Biol.$$v222$$y2023
000613831 999C5 $$1Bazazian$$2Crossref$$oBazazian 2015$$y2015
000613831 999C5 $$1de Teresa-Trueba$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-022-01746-2$$p284 -$$tNat. Methods$$v20$$y2023
000613831 999C5 $$1Ester$$2Crossref$$oEster 1996$$y1996
000613831 999C5 $$1Ferreira$$2Crossref$$oFerreira 2021$$y2021
000613831 999C5 $$1Ferreira$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-36627-5$$p1216 -$$tNat. Commun.$$v14$$y2023
000613831 999C5 $$1Förster$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0409178102$$p4729 -$$tProc. Natl. Acad. Sci.$$v102$$y2005
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2023.12.05.570263$$uGaifas, L., Timmins, J., Gutsche, I., 2023. blik: an extensible napari plugin for cryo-et data visualisation, annotation and analysis, bioRxiv: https://www.biorxiv.org/content/early/2023/12/07/2023.12.05.570263.full.pdf.
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2649-2$$uHarris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with NumPy. Nature 585 (7825), pp. 357–362. arXiv:2006.10256, https://doi.org/10.1038/s41586-020-2649-2.
000613831 999C5 $$1Humphrey$$2Crossref$$9-- missing cx lookup --$$a10.1016/0263-7855(96)00018-5$$p33 -$$tJ. Mol. Graph.$$v14$$y1996
000613831 999C5 $$1Lamm$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cmpb.2022.106990$$p106990 -$$tComput. Methods Programs Biomed.$$v224$$y2022
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2024.01.05.574336$$uLamm, L., Zufferey, S., Righetto, R.D., Wietrzynski, W., Yamauchi, K.A., Burt, A., Liu, Y., Zhang, H., Martinez-Sanchez, A., Ziegler, S., Isensee, F., Schnabel, J.A.,Engel, B.D., Peng, T., 2024. Membrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography, bioRxiv: https://www.biorxiv.org/content/early/2024/01/05/2024.01.05.574336.full.pdf.
000613831 999C5 $$1Lebbink$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2006.12.001$$p327 -$$tJ. Struct. Biol.$$v158$$y2007
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-85228-5_42$$uLebbink, M.N., Geerts, W.J., van Donselaar, E., Humbel, B.M., Post, J.A., Hertzberger, L.O., Koster, A.J., Verkleij, A.J., 2008. Electron tomography and template matching of biological membranes. In: EMC 2008 14th Eur. Microsc. Congr. 1–5 Sept. 2008, Aachen, Ger., Springer, Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 83–84. https://link.springer.com/chapter/10.1007/978-3-540-85228-5_42.
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2023.01.31.526409$$uLembo, S., Strauss, L., Cheng, D., Vermeil, J., Siggel, M.,Cheng, W.C.D., Vermeil, J., Siggel, M., Toro-Nahuelpan, M., Chan, C.J., Kosinski, J., Piel, M., Du Roure, O., et al., 2023. The distance between the plasma membrane and the actomyosin cortex acts as a nanogate to control cell surface mechanics, bioRxiv 2001–2023. https://doi.org/10.1101/2023.01.31.526409.
000613831 999C5 $$1Lučić$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.201304193$$p407 -$$tJ. Cell Biol.$$v202$$y2013
000613831 999C5 $$1Luengo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2017.02.007$$p43 -$$tJ. Struct. Biol.$$v198$$y2017
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aad8857$$uMahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Kuhn Cuellar, L., Forster, F., Hyman, A.A., Plitzko, J.M., Baumeister, W., 2016. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science (80-. ). 351 (6276), pp. 969–972. https://doi.org/10.1126/science.aad8857.
000613831 999C5 $$1Martinez-Sanchez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2014.02.015$$p49 -$$tJ. Struct. Biol.$$v186$$y2014
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-019-0675-5$$uMartinez-Sanchez, A., Kochovski, Z., Laugks, U., Meyer zum Alten Borgloh, J., Chakraborty, S., Pfeffer, S., Baumeister, W., Lučić, V., 2020. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat. Methods 17
000613831 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-019-0675-5$$u(2) (2020) 209-216, https://doi.org/10.1038/s41592-019-0675-5.
000613831 999C5 $$1Mattei$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1811237115$$pE9401 -$$tProc. Natl. Acad. Sci. U.S.A.$$v115$$y2018
000613831 999C5 $$1Moebel$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-021-01275-4$$p1386 -$$tNat. Methods$$v18$$y2021
000613831 999C5 $$1Moreno$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11227-022-04607-z$$tJ. Supercomput.$$y2022
000613831 999C5 $$2Crossref$$uNapari contributors, napari: a multi-dimensional image viewer for python, 2023, https://doi.org/10.5281/zenodo.3555620.
000613831 999C5 $$1Pfeffer$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms14516$$p14516 -$$tNat. Commun.$$v8$$y2017
000613831 999C5 $$1Pyle$$2Crossref$$9-- missing cx lookup --$$a10.1042/BCJ20200715$$p1827 -$$tBiochem. J.$$v478$$y2021
000613831 999C5 $$1Rego$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btu829$$p1322 -$$tBioinformatics$$v31$$y2015
000613831 999C5 $$1Salfer$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pcbi.1007962$$p1 -$$tPLoS Comput. Biol.$$v16$$y2020
000613831 999C5 $$1Stalling$$2Crossref$$oStalling 2005$$y2005
000613831 999C5 $$1Tasel$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2016.03.002$$p253 -$$tJ. Struct. Biol.$$v194$$y2016
000613831 999C5 $$1Tegunov$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-020-01054-7$$p186 -$$tNat. Methods$$v18$$y2021
000613831 999C5 $$1Tong$$2Crossref$$9-- missing cx lookup --$$a10.1109/TPAMI.2004.1273934$$p594 -$$tIEEE Trans. Pattern Anal. Mach. Intell.$$v26$$y2004
000613831 999C5 $$1Virtanen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-019-0686-2$$p261 -$$tNat. Methods$$v17$$y2020
000613831 999C5 $$1Volkmann$$2Crossref$$oVolkmann 2010$$y2010
000613831 999C5 $$1Wietrzynski$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.53740.sa2$$tElife$$y2020
000613831 999C5 $$1Wilfling$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.molcel.2020.10.030$$p764 -$$tMol. Cell$$v80$$y2020
000613831 999C5 $$1Wu$$2Crossref$$oWu 2019$$y2019
000613831 999C5 $$1Xue$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-022-05255-2$$p205 -$$tNature$$v610$$y2022
000613831 999C5 $$1Zabeo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.sbi.2022.102464$$p102464 -$$tCurr. Opin. Struct. Biol.$$v77$$y2022
000613831 999C5 $$2Crossref$$uZhou, Q.-Y., Park, J., Koltun, V., 2018. Open3D: A Modern Library for 3D Data Processing. arXiv:1801.09847. https://arxiv.org/abs/1801.09847.