001     613830
005     20250723172325.0
024 7 _ |a 10.1038/s41467-024-51417-3
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05636
|2 datacite_doi
024 7 _ |a altmetric:166253416
|2 altmetric
024 7 _ |a pmid:39138192
|2 pmid
024 7 _ |a WOS:001291270300025
|2 WOS
024 7 _ |a openalex:W4401553288
|2 openalex
037 _ _ |a PUBDB-2024-05636
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Dupuy, Remi
|0 P:(DE-H253)PIP1097998
|b 0
|e Corresponding author
245 _ _ |a The solvation shell probed by resonant intermolecular Coulombic decay
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726219302_4155675
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecules involved in solvation shells have properties differing from those of the bulk solvent, which can in turn affect reactivity. Among key properties of these molecules are their nature and electronic structure. Widely used tools to characterize this type of property are X-ray-based spectroscopies, which, however, usually lack the capability to selectively probe the solvation-shell molecules. A class of X-ray triggered “non-local” processes has the recognized potential to provide this selectivity. Intermolecular Coulombic decay (ICD) and related processes involve neighbouring molecules in the decay of the X-ray-excited target, and are thus naturally sensitive to its immediate environment. Applying electron spectroscopy to aqueous solutions, we explore the resonant flavours of ICD and demonstrate how it can inform on the first solvation shell of excited solvated cations. One particular ICD process turns out to be a potent marker of the formation of ion pairs. Another gives a direct access to the electron binding energies of the water molecules in the first solvation shell, a quantity previously elusive to direct measurements. The resonant nature of the processes makes them readily measurable, providing powerful new spectroscopic tools.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20211422 (I-20211422)
|0 G:(DE-H253)I-20211422
|c I-20211422
|x 1
536 _ _ |a FS-Proposal: I-20220291 (I-20220291)
|0 G:(DE-H253)I-20220291
|c I-20220291
|x 2
536 _ _ |a FS-Proposal: I-20221212 (I-20221212)
|0 G:(DE-H253)I-20221212
|c I-20221212
|x 3
536 _ _ |a AQUACHIRAL - Chiral aqueous-phase chemistry (883759)
|0 G:(EU-Grant)883759
|c 883759
|f ERC-2019-ADG
|x 4
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 5
542 _ _ |i 2024-08-13
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-08-13
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
700 1 _ |a Buttersack, Tillmann
|0 P:(DE-H253)PIP1095694
|b 1
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 2
700 1 _ |a Richter, Clemens
|0 P:(DE-H253)PIP1098291
|b 3
700 1 _ |a Gholami, Shirin
|0 P:(DE-H253)PIP1100593
|b 4
700 1 _ |a Björneholm, Olle
|0 P:(DE-H253)PIP1083875
|b 5
700 1 _ |a Hergenhahn, Uwe
|0 P:(DE-H253)PIP1008114
|b 6
700 1 _ |a Winter, Bernd
|0 P:(DE-H253)PIP1023483
|b 7
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-H253)PIP1098267
|b 8
773 1 8 |a 10.1038/s41467-024-51417-3
|b Springer Science and Business Media LLC
|d 2024-08-13
|n 1
|p 6926
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-51417-3
|g Vol. 15, no. 1, p. 6926
|0 PERI:(DE-600)2553671-0
|n 1
|p 6926
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/613830/files/s41467-024-51417-3%281%29.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/613830/files/s41467-024-51417-3%281%29.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:613830
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1097998
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1095694
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1098291
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1100593
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1083875
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1083875
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1008114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1023483
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1098267
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1126/science.1058190
|9 -- missing cx lookup --
|1 MF Kropman
|p 2118 -
|2 Crossref
|u Kropman, M. F. & Bakker, H. J. Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2001).
|t Science
|v 291
|y 2001
999 C 5 |2 Crossref
|u Atkins, P. W. & de Paula, J. Atkins’ Physical Chemistry 7th edn (Oxford University Press, Oxford; New York, 2002).
999 C 5 |a 10.1093/oso/9780195094329.001.0001
|9 -- missing cx lookup --
|2 Crossref
|u Fawcett, W. R. Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details (Oxford University Press, Oxford, 2004).
999 C 5 |a 10.1021/cr040381p
|9 -- missing cx lookup --
|1 B Winter
|p 1176 -
|2 Crossref
|u Winter, B. & Faubel, M. Photoemission from liquid aqueous solutions. Chem. Rev. 106, 1176–1211 (2006).
|t Chem. Rev.
|v 106
|y 2006
999 C 5 |a 10.1063/5.0036178
|9 -- missing cx lookup --
|1 R Dupuy
|p 060901 -
|2 Crossref
|u Dupuy, R. et al. Core level photoelectron spectroscopy of heterogeneous reactions at liquid–vapor interfaces: current status, challenges, and prospects. J. Chem. Phys. 154, 060901 (2021).
|t J. Chem. Phys.
|v 154
|y 2021
999 C 5 |a 10.1038/nphys1498
|9 -- missing cx lookup --
|1 T Jahnke
|p 139 -
|2 Crossref
|u Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139–142 (2010).
|t Nat. Phys.
|v 6
|y 2010
999 C 5 |a 10.1038/nphys1500
|9 -- missing cx lookup --
|1 M Mucke
|p 143 -
|2 Crossref
|u Mucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143–146 (2010).
|t Nat. Phys.
|v 6
|y 2010
999 C 5 |a 10.1103/PhysRevLett.128.133001
|9 -- missing cx lookup --
|1 P Zhang
|p 133001 -
|2 Crossref
|u Zhang, P., Perry, C., Luu, T. T., Matselyukh, D. & Wörner, H. J. Intermolecular Coulombic decay in liquid water. Phys. Rev. Lett. 128, 133001 (2022).
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1038/nchem.2727
|9 -- missing cx lookup --
|1 I Unger
|p 708 -
|2 Crossref
|u Unger, I. et al. Observation of electron-transfer-mediated decay in aqueous solution. Nat. Chem. 9, 708–714 (2017).
|t Nat. Chem.
|v 9
|y 2017
999 C 5 |a 10.1038/nchem.1680
|9 -- missing cx lookup --
|1 S Thürmer
|p 590 -
|2 Crossref
|u Thürmer, S. et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 5, 590–596 (2013).
|t Nat. Chem.
|v 5
|y 2013
999 C 5 |a 10.1038/nchem.2429
|9 -- missing cx lookup --
|1 V Stumpf
|p 237 -
|2 Crossref
|u Stumpf, V., Gokhberg, K. & Cederbaum, L. S. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 8, 237–241 (2016).
|t Nat. Chem.
|v 8
|y 2016
999 C 5 |a 10.1038/s41557-023-01302-1
|9 -- missing cx lookup --
|1 G Gopakumar
|p 1408 -
|2 Crossref
|u Gopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem. 15, 1408–1414 (2023).
|t Nat. Chem.
|v 15
|y 2023
999 C 5 |a 10.1021/acs.chemrev.0c00106
|9 -- missing cx lookup --
|1 T Jahnke
|p 11295 -
|2 Crossref
|u Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020).
|t Chem. Rev.
|v 120
|y 2020
999 C 5 |a 10.1146/annurev-physchem-040513-103605
|9 -- missing cx lookup --
|1 E Alizadeh
|p 379 -
|2 Crossref
|u Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 66, 379–398 (2015).
|t Annu. Rev. Phys. Chem.
|v 66
|y 2015
999 C 5 |a 10.1063/1.2735607
|9 -- missing cx lookup --
|1 M Lundwall
|p 214706 -
|2 Crossref
|u Lundwall, M. et al. Self-assembled heterogeneous argon/neon core–shell clusters studied by photoelectron spectroscopy. J. Chem. Phys. 126, 214706 (2007).
|t J. Chem. Phys.
|v 126
|y 2007
999 C 5 |a 10.1088/1367-2630/16/10/103026
|9 -- missing cx lookup --
|1 E Fasshauer
|p 103026 -
|2 Crossref
|u Fasshauer, E., Förstel, M., Pallmann, S., Pernpointner, M. & Hergenhahn, U. Using ICD for structural analysis of clusters: a case study on NeAr clusters. N. J. Phys. 16, 103026 (2014).
|t N. J. Phys.
|v 16
|y 2014
999 C 5 |a 10.2306/scienceasia1513-1874.2014.40.290
|9 -- missing cx lookup --
|1 W Pokapanich
|p 290 -
|2 Crossref
|u Pokapanich, W., Ottosson, N., Söderström, J., Björneholm, O. & Öhrwall, G. No signature of contact ion pairs in the K 2p Auger spectra of highly concentrated potassium halide solutions. ScienceAsia 40, 290–294 (2014).
|t ScienceAsia
|v 40
|y 2014
999 C 5 |a 10.1021/acs.jpcb.7b06061
|9 -- missing cx lookup --
|1 MN Pohl
|p 7709 -
|2 Crossref
|u Pohl, M. N. et al. Sensitivity of electron transfer mediated decay to ion pairing. J. Phys. Chem. B 121, 7709–7714 (2017).
|t J. Phys. Chem. B
|v 121
|y 2017
999 C 5 |a 10.1039/D1CP00430A
|9 -- missing cx lookup --
|1 S Malerz
|p 8246 -
|2 Crossref
|u Malerz, S. et al. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys. Chem. Chem. Phys. 23, 8246–8260 (2021).
|t Phys. Chem. Chem. Phys.
|v 23
|y 2021
999 C 5 |a 10.1039/D2CP00227B
|9 -- missing cx lookup --
|1 G Gopakumar
|p 8661 -
|2 Crossref
|u Gopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022).
|t Phys. Chem. Chem. Phys.
|v 24
|y 2022
999 C 5 |a 10.1039/C8SC03381A
|9 -- missing cx lookup --
|1 MN Pohl
|p 848 -
|2 Crossref
|u Pohl, M. N. et al. Do water’s electrons care about electrolytes? Chem. Sci. 10, 848–865 (2019).
|t Chem. Sci.
|v 10
|y 2019
999 C 5 |a 10.1038/s41586-021-03646-5
|9 -- missing cx lookup --
|1 PE Mason
|p 673 -
|2 Crossref
|u Mason, P. E. et al. Spectroscopic evidence for a gold-coloured metallic water solution. Nature 595, 673–676 (2021).
|t Nature
|v 595
|y 2021
999 C 5 |a 10.1074/jbc.R116.735894
|9 -- missing cx lookup --
|1 E Carafoli
|p 20849 -
|2 Crossref
|u Carafoli, E. & Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291, 20849–20857 (2016).
|t J. Biol. Chem.
|v 291
|y 2016
999 C 5 |a 10.1063/1.2187472
|9 -- missing cx lookup --
|1 K Gokhberg
|p 144315 -
|2 Crossref
|u Gokhberg, K., Averbukh, V. & Cederbaum, L. S. Interatomic decay of inner-valence-excited states in clusters. J. Chem. Phys. 124, 144315 (2006).
|t J. Chem. Phys.
|v 124
|y 2006
999 C 5 |a 10.1063/1.1937395
|9 -- missing cx lookup --
|1 S Barth
|p 241102 -
|2 Crossref
|u Barth, S. et al. Observation of resonant Interatomic Coulombic decay in Ne clusters. J. Chem. Phys. 122, 241102 (2005).
|t J. Chem. Phys.
|v 122
|y 2005
999 C 5 |a 10.1103/PhysRevLett.97.243401
|9 -- missing cx lookup --
|1 T Aoto
|p 243401 -
|2 Crossref
|u Aoto, T. et al. Properties of resonant interatomic Coulombic decay in Ne dimers. Phys. Rev. Lett. 97, 243401 (2006).
|t Phys. Rev. Lett.
|v 97
|y 2006
999 C 5 |a 10.1103/PhysRevLett.121.243002
|9 -- missing cx lookup --
|1 A Mhamdi
|p 243002 -
|2 Crossref
|u Mhamdi, A. et al. Breakdown of the spectator concept in low-electron-energy resonant decay processes. Phys. Rev. Lett. 121, 243002 (2018).
|t Phys. Rev. Lett.
|v 121
|y 2018
999 C 5 |1 AC LaForge
|y 2021
|2 Crossref
|u LaForge, A. C. et al. Ultrafast resonant interatomic Coulombic decay induced by quantum fluid dynamics. Phys. Rev. X 11, 021011 (2021).
999 C 5 |a 10.1103/PhysRevResearch.5.013055
|9 -- missing cx lookup --
|1 A Hans
|p 013055 -
|2 Crossref
|u Hans, A. et al. Mechanisms of one-photon two-site double ionization after resonant inner-valence excitation in Ne clusters. Phys. Rev. Res. 5, 013055 (2023).
|t Phys. Rev. Res.
|v 5
|y 2023
999 C 5 |a 10.1103/PhysRevLett.105.153002
|9 -- missing cx lookup --
|1 B Najjari
|p 153002 -
|2 Crossref
|u Najjari, B., Voitkiv, A. B. & Müller, C. Two-center resonant photoionization. Phys. Rev. Lett. 105, 153002 (2010).
|t Phys. Rev. Lett.
|v 105
|y 2010
999 C 5 |a 10.1021/jz2016654
|9 -- missing cx lookup --
|1 A Golan
|p 458 -
|2 Crossref
|u Golan, A. & Ahmed, M. Ionization of water clusters mediated by exciton energy transfer from argon clusters. J. Phys. Chem. Lett. 3, 458–462 (2012).
|t J. Phys. Chem. Lett.
|v 3
|y 2012
999 C 5 |a 10.1103/PhysRevLett.111.233004
|9 -- missing cx lookup --
|1 F Trinter
|p 233004 -
|2 Crossref
|u Trinter, F. et al. Vibrationally resolved decay width of interatomic Coulombic decay in HeNe. Phys. Rev. Lett. 111, 233004 (2013).
|t Phys. Rev. Lett.
|v 111
|y 2013
999 C 5 |a 10.1103/PhysRevA.97.053407
|9 -- missing cx lookup --
|1 A Mhamdi
|p 053407 -
|2 Crossref
|u Mhamdi, A. et al. Resonant interatomic Coulombic decay in HeNe: electron angular emission distributions. Phys. Rev. A 97, 053407 (2018).
|t Phys. Rev. A
|v 97
|y 2018
999 C 5 |a 10.1021/acs.jpclett.9b00124
|9 -- missing cx lookup --
|1 A Hans
|p 1078 -
|2 Crossref
|u Hans, A. et al. Efficient fluorescence quenching by distant production of a free electron. J. Phys. Chem. Lett. 10, 1078–1082 (2019).
|t J. Phys. Chem. Lett.
|v 10
|y 2019
999 C 5 |a 10.1038/nature07252
|9 -- missing cx lookup --
|1 EF Aziz
|p 89 -
|2 Crossref
|u Aziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89–91 (2008).
|t Nature
|v 455
|y 2008
999 C 5 |a 10.1063/5.0072346
|9 -- missing cx lookup --
|1 S Malerz
|p 015101 -
|2 Crossref
|u Malerz, S. et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 93, 015101 (2022).
|t Rev. Sci. Instrum.
|v 93
|y 2022
999 C 5 |a 10.1103/PhysRevB.41.928
|9 -- missing cx lookup --
|1 FMF de Groot
|p 928 -
|2 Crossref
|u de Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. L2,3 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry. Phys. Rev. B 41, 928 (1990).
|t Phys. Rev. B
|v 41
|y 1990
999 C 5 |a 10.1016/j.elspec.2020.146984
|9 -- missing cx lookup --
|1 T Saisopa
|p 146984 -
|2 Crossref
|u Saisopa, T. et al. Investigation of solvated calcium dication structure in pure water, methanol, and ethanol solutions by means of K and L2,3-edges X-ray absorption spectroscopy. J. Electron Spectrosc. Relat. Phenom. 244, 146984 (2020).
|t J. Electron Spectrosc. Relat. Phenom.
|v 244
|y 2020
999 C 5 |a 10.1021/ja203430s
|9 -- missing cx lookup --
|1 W Pokapanich
|p 13430 -
|2 Crossref
|u Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).
|t J. Am. Chem. Soc.
|v 133
|y 2011
999 C 5 |a 10.1103/PhysRevA.49.3685
|9 -- missing cx lookup --
|1 M Meyer
|p 3685 -
|2 Crossref
|u Meyer, M., Von Raven, E., Sonntag, B. & Hansen, J. E. Electronic decay processes of photoexcited 2p resonances of atomic Ar, K, and Ca. Phys. Rev. A 49, 3685–3703 (1994).
|t Phys. Rev. A
|v 49
|y 1994
999 C 5 |a 10.1103/PhysRevB.47.11736
|9 -- missing cx lookup --
|1 M Elango
|p 11736 -
|2 Crossref
|u Elango, M. et al. Autoionization phenomena involving the 2p 5 3d configuration of argonlike ions in ionic solids. Phys. Rev. B 47, 11736–11748 (1993).
|t Phys. Rev. B
|v 47
|y 1993
999 C 5 |a 10.1146/annurev-physchem-040513-103715
|9 -- missing cx lookup --
|1 R Seidel
|p 283 -
|2 Crossref
|u Seidel, R., Winter, B. & Bradforth, S. E. Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy. Annu. Rev. Phys. Chem. 67, 283–305 (2016).
|t Annu. Rev. Phys. Chem.
|v 67
|y 2016
999 C 5 |a 10.1039/D1SC01908B
|9 -- missing cx lookup --
|1 S Thürmer
|p 10558 -
|2 Crossref
|u Thürmer, S. et al. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 12, 10558–10582 (2021).
|t Chem. Sci.
|v 12
|y 2021
999 C 5 |a 10.1021/jp048838m
|9 -- missing cx lookup --
|1 T Megyes
|p 7261 -
|2 Crossref
|u Megyes, T., Grósz, T., Radnai, T., Bakó, I. & Pálinkás, G. Solvation of calcium ion in polar solvents: an X-ray diffraction and ab initio study. J. Phys. Chem. A 108, 7261–7271 (2004).
|t J. Phys. Chem. A
|v 108
|y 2004
999 C 5 |a 10.1063/1.4775588
|9 -- missing cx lookup --
|1 V-T Pham
|p 044201 -
|2 Crossref
|u Pham, V.-T. & Fulton, J. L. Ion-pairing in aqueous CaCl2 and RbBr solutions: simultaneous structural refinement of XAFS and XRD data. J. Chem. Phys. 138, 044201 (2013).
|t J. Chem. Phys.
|v 138
|y 2013
999 C 5 |a 10.1021/jp046476c
|9 -- missing cx lookup --
|1 YS Badyal
|p 11819 -
|2 Crossref
|u Badyal, Y. S., Barnes, A. C., Cuello, G. J. & Simonson, J. M. Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solution. II: insights into longer range order from neutron diffraction isotope substitution. J. Phys. Chem. A 108, 11819–11827 (2004).
|t J. Phys. Chem. A
|v 108
|y 2004
999 C 5 |a 10.1039/c2dt31718d
|9 -- missing cx lookup --
|1 WW Rudolph
|p 3919 -
|2 Crossref
|u Rudolph, W. W. & Irmer, G. Hydration of the calcium(ii) ion in an aqueous solution of common anions (ClO4−, Cl−, Br−, and $${{{{\rm{NO}}}}}_{3}^{-}$$). Dalton Trans. 42, 3919–3935 (2013).
|t Dalton Trans.
|v 42
|y 2013
999 C 5 |a 10.1021/jp030263q
|9 -- missing cx lookup --
|1 B Winter
|p 2625 -
|2 Crossref
|u Winter, B. et al. Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 108, 2625–2632 (2004).
|t J. Phys. Chem. A
|v 108
|y 2004
999 C 5 |a 10.1016/j.cplett.2008.04.096
|9 -- missing cx lookup --
|1 D Nordlund
|p 86 -
|2 Crossref
|u Nordlund, D. et al. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory. Chem. Phys. Lett. 460, 86–92 (2008).
|t Chem. Phys. Lett.
|v 460
|y 2008
999 C 5 |a 10.1039/C0CP01636E
|9 -- missing cx lookup --
|1 K Nishizawa
|p 413 -
|2 Crossref
|u Nishizawa, K. et al. High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys. Chem. Chem. Phys. 13, 413–417 (2011).
|t Phys. Chem. Chem. Phys.
|v 13
|y 2011
999 C 5 |a 10.1038/297138a0
|9 -- missing cx lookup --
|1 NA Hewish
|p 138 -
|2 Crossref
|u Hewish, N. A., Neilson, G. W. & Enderby, J. E. Environment of Ca2+ ions in aqueous solvent. Nature 297, 138–139 (1982).
|t Nature
|v 297
|y 1982
999 C 5 |a 10.1021/jacs.3c14570
|9 -- missing cx lookup --
|1 M Mosaferi
|p 9836 -
|2 Crossref
|u Mosaferi, M. et al. Fingerprint of dipole moment orientation of water molecules in Cu2+ aqueous solution probed by X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 146, 9836–9850 (2024).
|t J. Am. Chem. Soc.
|v 146
|y 2024
999 C 5 |a 10.1039/D1CP03165A
|9 -- missing cx lookup --
|1 B Credidio
|p 1310 -
|2 Crossref
|u Credidio, B. et al. Quantitative electronic structure and work-function changes of liquid water induced by solute. Phys. Chem. Chem. Phys. 24, 1310–1325 (2022).
|t Phys. Chem. Chem. Phys.
|v 24
|y 2022
999 C 5 |a 10.1016/j.nima.2012.10.110
|9 -- missing cx lookup --
|1 J Viefhaus
|p 151 -
|2 Crossref
|u Viefhaus, J. et al. The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. Sect. A 710, 151–154 (2013).
|t Nucl. Instrum. Methods Phys. Res. Sect. A
|v 710
|y 2013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21