000613830 001__ 613830
000613830 005__ 20250723172325.0
000613830 0247_ $$2doi$$a10.1038/s41467-024-51417-3
000613830 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05636
000613830 0247_ $$2altmetric$$aaltmetric:166253416
000613830 0247_ $$2pmid$$apmid:39138192
000613830 0247_ $$2WOS$$aWOS:001291270300025
000613830 0247_ $$2openalex$$aopenalex:W4401553288
000613830 037__ $$aPUBDB-2024-05636
000613830 041__ $$aEnglish
000613830 082__ $$a500
000613830 1001_ $$0P:(DE-H253)PIP1097998$$aDupuy, Remi$$b0$$eCorresponding author
000613830 245__ $$aThe solvation shell probed by resonant intermolecular Coulombic decay
000613830 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000613830 3367_ $$2DRIVER$$aarticle
000613830 3367_ $$2DataCite$$aOutput Types/Journal article
000613830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726219302_4155675
000613830 3367_ $$2BibTeX$$aARTICLE
000613830 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000613830 3367_ $$00$$2EndNote$$aJournal Article
000613830 520__ $$aMolecules involved in solvation shells have properties differing from those of the bulk solvent, which can in turn affect reactivity. Among key properties of these molecules are their nature and electronic structure. Widely used tools to characterize this type of property are X-ray-based spectroscopies, which, however, usually lack the capability to selectively probe the solvation-shell molecules. A class of X-ray triggered “non-local” processes has the recognized potential to provide this selectivity. Intermolecular Coulombic decay (ICD) and related processes involve neighbouring molecules in the decay of the X-ray-excited target, and are thus naturally sensitive to its immediate environment. Applying electron spectroscopy to aqueous solutions, we explore the resonant flavours of ICD and demonstrate how it can inform on the first solvation shell of excited solvated cations. One particular ICD process turns out to be a potent marker of the formation of ion pairs. Another gives a direct access to the electron binding energies of the water molecules in the first solvation shell, a quantity previously elusive to direct measurements. The resonant nature of the processes makes them readily measurable, providing powerful new spectroscopic tools. 
000613830 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000613830 536__ $$0G:(DE-H253)I-20211422$$aFS-Proposal: I-20211422 (I-20211422)$$cI-20211422$$x1
000613830 536__ $$0G:(DE-H253)I-20220291$$aFS-Proposal: I-20220291 (I-20220291)$$cI-20220291$$x2
000613830 536__ $$0G:(DE-H253)I-20221212$$aFS-Proposal: I-20221212 (I-20221212)$$cI-20221212$$x3
000613830 536__ $$0G:(EU-Grant)883759$$aAQUACHIRAL - Chiral aqueous-phase chemistry (883759)$$c883759$$fERC-2019-ADG$$x4
000613830 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x5
000613830 542__ $$2Crossref$$i2024-08-13$$uhttps://creativecommons.org/licenses/by/4.0
000613830 542__ $$2Crossref$$i2024-08-13$$uhttps://creativecommons.org/licenses/by/4.0
000613830 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000613830 693__ $$0EXP:(DE-H253)P-P04-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P04-20150101$$aPETRA III$$fPETRA Beamline P04$$x0
000613830 7001_ $$0P:(DE-H253)PIP1095694$$aButtersack, Tillmann$$b1
000613830 7001_ $$0P:(DE-H253)PIP1017364$$aTrinter, Florian$$b2
000613830 7001_ $$0P:(DE-H253)PIP1098291$$aRichter, Clemens$$b3
000613830 7001_ $$0P:(DE-H253)PIP1100593$$aGholami, Shirin$$b4
000613830 7001_ $$0P:(DE-H253)PIP1083875$$aBjörneholm, Olle$$b5
000613830 7001_ $$0P:(DE-H253)PIP1008114$$aHergenhahn, Uwe$$b6
000613830 7001_ $$0P:(DE-H253)PIP1023483$$aWinter, Bernd$$b7
000613830 7001_ $$0P:(DE-H253)PIP1098267$$aBluhm, Hendrik$$b8
000613830 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-51417-3$$bSpringer Science and Business Media LLC$$d2024-08-13$$n1$$p6926$$tNature Communications$$v15$$x2041-1723$$y2024
000613830 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-51417-3$$gVol. 15, no. 1, p. 6926$$n1$$p6926$$tNature Communications$$v15$$x2041-1723$$y2024
000613830 8564_ $$uhttps://bib-pubdb1.desy.de/record/613830/files/s41467-024-51417-3%281%29.pdf$$yOpenAccess
000613830 8564_ $$uhttps://bib-pubdb1.desy.de/record/613830/files/s41467-024-51417-3%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000613830 909CO $$ooai:bib-pubdb1.desy.de:613830$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097998$$aExternal Institute$$b0$$kExtern
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095694$$aExternal Institute$$b1$$kExtern
000613830 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1017364$$aEuropean XFEL$$b2$$kXFEL.EU
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017364$$aExternal Institute$$b2$$kExtern
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098291$$aExternal Institute$$b3$$kExtern
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100593$$aExternal Institute$$b4$$kExtern
000613830 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1083875$$aEuropean XFEL$$b5$$kXFEL.EU
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083875$$aExternal Institute$$b5$$kExtern
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008114$$aExternal Institute$$b6$$kExtern
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023483$$aExternal Institute$$b7$$kExtern
000613830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098267$$aExternal Institute$$b8$$kExtern
000613830 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000613830 9141_ $$y2024
000613830 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000613830 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000613830 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000613830 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000613830 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000613830 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000613830 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000613830 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000613830 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000613830 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000613830 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000613830 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000613830 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000613830 980__ $$ajournal
000613830 980__ $$aVDB
000613830 980__ $$aUNRESTRICTED
000613830 980__ $$aI:(DE-H253)HAS-User-20120731
000613830 9801_ $$aFullTexts
000613830 999C5 $$1MF Kropman$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1058190$$p2118 -$$tScience$$uKropman, M. F. & Bakker, H. J. Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2001).$$v291$$y2001
000613830 999C5 $$2Crossref$$uAtkins, P. W. & de Paula, J. Atkins’ Physical Chemistry 7th edn (Oxford University Press, Oxford; New York, 2002).
000613830 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/oso/9780195094329.001.0001$$uFawcett, W. R. Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details (Oxford University Press, Oxford, 2004).
000613830 999C5 $$1B Winter$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr040381p$$p1176 -$$tChem. Rev.$$uWinter, B. & Faubel, M. Photoemission from liquid aqueous solutions. Chem. Rev. 106, 1176–1211 (2006).$$v106$$y2006
000613830 999C5 $$1R Dupuy$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0036178$$p060901 -$$tJ. Chem. Phys.$$uDupuy, R. et al. Core level photoelectron spectroscopy of heterogeneous reactions at liquid–vapor interfaces: current status, challenges, and prospects. J. Chem. Phys. 154, 060901 (2021).$$v154$$y2021
000613830 999C5 $$1T Jahnke$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1498$$p139 -$$tNat. Phys.$$uJahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139–142 (2010).$$v6$$y2010
000613830 999C5 $$1M Mucke$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1500$$p143 -$$tNat. Phys.$$uMucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143–146 (2010).$$v6$$y2010
000613830 999C5 $$1P Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.133001$$p133001 -$$tPhys. Rev. Lett.$$uZhang, P., Perry, C., Luu, T. T., Matselyukh, D. & Wörner, H. J. Intermolecular Coulombic decay in liquid water. Phys. Rev. Lett. 128, 133001 (2022).$$v128$$y2022
000613830 999C5 $$1I Unger$$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.2727$$p708 -$$tNat. Chem.$$uUnger, I. et al. Observation of electron-transfer-mediated decay in aqueous solution. Nat. Chem. 9, 708–714 (2017).$$v9$$y2017
000613830 999C5 $$1S Thürmer$$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.1680$$p590 -$$tNat. Chem.$$uThürmer, S. et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 5, 590–596 (2013).$$v5$$y2013
000613830 999C5 $$1V Stumpf$$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.2429$$p237 -$$tNat. Chem.$$uStumpf, V., Gokhberg, K. & Cederbaum, L. S. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 8, 237–241 (2016).$$v8$$y2016
000613830 999C5 $$1G Gopakumar$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41557-023-01302-1$$p1408 -$$tNat. Chem.$$uGopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem. 15, 1408–1414 (2023).$$v15$$y2023
000613830 999C5 $$1T Jahnke$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.0c00106$$p11295 -$$tChem. Rev.$$uJahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020).$$v120$$y2020
000613830 999C5 $$1E Alizadeh$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-physchem-040513-103605$$p379 -$$tAnnu. Rev. Phys. Chem.$$uAlizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 66, 379–398 (2015).$$v66$$y2015
000613830 999C5 $$1M Lundwall$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2735607$$p214706 -$$tJ. Chem. Phys.$$uLundwall, M. et al. Self-assembled heterogeneous argon/neon core–shell clusters studied by photoelectron spectroscopy. J. Chem. Phys. 126, 214706 (2007).$$v126$$y2007
000613830 999C5 $$1E Fasshauer$$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/16/10/103026$$p103026 -$$tN. J. Phys.$$uFasshauer, E., Förstel, M., Pallmann, S., Pernpointner, M. & Hergenhahn, U. Using ICD for structural analysis of clusters: a case study on NeAr clusters. N. J. Phys. 16, 103026 (2014).$$v16$$y2014
000613830 999C5 $$1W Pokapanich$$2Crossref$$9-- missing cx lookup --$$a10.2306/scienceasia1513-1874.2014.40.290$$p290 -$$tScienceAsia$$uPokapanich, W., Ottosson, N., Söderström, J., Björneholm, O. & Öhrwall, G. No signature of contact ion pairs in the K 2p Auger spectra of highly concentrated potassium halide solutions. ScienceAsia 40, 290–294 (2014).$$v40$$y2014
000613830 999C5 $$1MN Pohl$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcb.7b06061$$p7709 -$$tJ. Phys. Chem. B$$uPohl, M. N. et al. Sensitivity of electron transfer mediated decay to ion pairing. J. Phys. Chem. B 121, 7709–7714 (2017).$$v121$$y2017
000613830 999C5 $$1S Malerz$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CP00430A$$p8246 -$$tPhys. Chem. Chem. Phys.$$uMalerz, S. et al. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys. Chem. Chem. Phys. 23, 8246–8260 (2021).$$v23$$y2021
000613830 999C5 $$1G Gopakumar$$2Crossref$$9-- missing cx lookup --$$a10.1039/D2CP00227B$$p8661 -$$tPhys. Chem. Chem. Phys.$$uGopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022).$$v24$$y2022
000613830 999C5 $$1MN Pohl$$2Crossref$$9-- missing cx lookup --$$a10.1039/C8SC03381A$$p848 -$$tChem. Sci.$$uPohl, M. N. et al. Do water’s electrons care about electrolytes? Chem. Sci. 10, 848–865 (2019).$$v10$$y2019
000613830 999C5 $$1PE Mason$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03646-5$$p673 -$$tNature$$uMason, P. E. et al. Spectroscopic evidence for a gold-coloured metallic water solution. Nature 595, 673–676 (2021).$$v595$$y2021
000613830 999C5 $$1E Carafoli$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.R116.735894$$p20849 -$$tJ. Biol. Chem.$$uCarafoli, E. & Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291, 20849–20857 (2016).$$v291$$y2016
000613830 999C5 $$1K Gokhberg$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2187472$$p144315 -$$tJ. Chem. Phys.$$uGokhberg, K., Averbukh, V. & Cederbaum, L. S. Interatomic decay of inner-valence-excited states in clusters. J. Chem. Phys. 124, 144315 (2006).$$v124$$y2006
000613830 999C5 $$1S Barth$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1937395$$p241102 -$$tJ. Chem. Phys.$$uBarth, S. et al. Observation of resonant Interatomic Coulombic decay in Ne clusters. J. Chem. Phys. 122, 241102 (2005).$$v122$$y2005
000613830 999C5 $$1T Aoto$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.243401$$p243401 -$$tPhys. Rev. Lett.$$uAoto, T. et al. Properties of resonant interatomic Coulombic decay in Ne dimers. Phys. Rev. Lett. 97, 243401 (2006).$$v97$$y2006
000613830 999C5 $$1A Mhamdi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.243002$$p243002 -$$tPhys. Rev. Lett.$$uMhamdi, A. et al. Breakdown of the spectator concept in low-electron-energy resonant decay processes. Phys. Rev. Lett. 121, 243002 (2018).$$v121$$y2018
000613830 999C5 $$1AC LaForge$$2Crossref$$uLaForge, A. C. et al. Ultrafast resonant interatomic Coulombic decay induced by quantum fluid dynamics. Phys. Rev. X 11, 021011 (2021).$$y2021
000613830 999C5 $$1A Hans$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.5.013055$$p013055 -$$tPhys. Rev. Res.$$uHans, A. et al. Mechanisms of one-photon two-site double ionization after resonant inner-valence excitation in Ne clusters. Phys. Rev. Res. 5, 013055 (2023).$$v5$$y2023
000613830 999C5 $$1B Najjari$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.153002$$p153002 -$$tPhys. Rev. Lett.$$uNajjari, B., Voitkiv, A. B. & Müller, C. Two-center resonant photoionization. Phys. Rev. Lett. 105, 153002 (2010).$$v105$$y2010
000613830 999C5 $$1A Golan$$2Crossref$$9-- missing cx lookup --$$a10.1021/jz2016654$$p458 -$$tJ. Phys. Chem. Lett.$$uGolan, A. & Ahmed, M. Ionization of water clusters mediated by exciton energy transfer from argon clusters. J. Phys. Chem. Lett. 3, 458–462 (2012).$$v3$$y2012
000613830 999C5 $$1F Trinter$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.233004$$p233004 -$$tPhys. Rev. Lett.$$uTrinter, F. et al. Vibrationally resolved decay width of interatomic Coulombic decay in HeNe. Phys. Rev. Lett. 111, 233004 (2013).$$v111$$y2013
000613830 999C5 $$1A Mhamdi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.97.053407$$p053407 -$$tPhys. Rev. A$$uMhamdi, A. et al. Resonant interatomic Coulombic decay in HeNe: electron angular emission distributions. Phys. Rev. A 97, 053407 (2018).$$v97$$y2018
000613830 999C5 $$1A Hans$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.9b00124$$p1078 -$$tJ. Phys. Chem. Lett.$$uHans, A. et al. Efficient fluorescence quenching by distant production of a free electron. J. Phys. Chem. Lett. 10, 1078–1082 (2019).$$v10$$y2019
000613830 999C5 $$1EF Aziz$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature07252$$p89 -$$tNature$$uAziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89–91 (2008).$$v455$$y2008
000613830 999C5 $$1S Malerz$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0072346$$p015101 -$$tRev. Sci. Instrum.$$uMalerz, S. et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 93, 015101 (2022).$$v93$$y2022
000613830 999C5 $$1FMF de Groot$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.41.928$$p928 -$$tPhys. Rev. B$$ude Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. L2,3 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry. Phys. Rev. B 41, 928 (1990).$$v41$$y1990
000613830 999C5 $$1T Saisopa$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.elspec.2020.146984$$p146984 -$$tJ. Electron Spectrosc. Relat. Phenom.$$uSaisopa, T. et al. Investigation of solvated calcium dication structure in pure water, methanol, and ethanol solutions by means of K and L2,3-edges X-ray absorption spectroscopy. J. Electron Spectrosc. Relat. Phenom. 244, 146984 (2020).$$v244$$y2020
000613830 999C5 $$1W Pokapanich$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja203430s$$p13430 -$$tJ. Am. Chem. Soc.$$uPokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).$$v133$$y2011
000613830 999C5 $$1M Meyer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.49.3685$$p3685 -$$tPhys. Rev. A$$uMeyer, M., Von Raven, E., Sonntag, B. & Hansen, J. E. Electronic decay processes of photoexcited 2p resonances of atomic Ar, K, and Ca. Phys. Rev. A 49, 3685–3703 (1994).$$v49$$y1994
000613830 999C5 $$1M Elango$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.11736$$p11736 -$$tPhys. Rev. B$$uElango, M. et al. Autoionization phenomena involving the 2p 5 3d configuration of argonlike ions in ionic solids. Phys. Rev. B 47, 11736–11748 (1993).$$v47$$y1993
000613830 999C5 $$1R Seidel$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-physchem-040513-103715$$p283 -$$tAnnu. Rev. Phys. Chem.$$uSeidel, R., Winter, B. & Bradforth, S. E. Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy. Annu. Rev. Phys. Chem. 67, 283–305 (2016).$$v67$$y2016
000613830 999C5 $$1S Thürmer$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1SC01908B$$p10558 -$$tChem. Sci.$$uThürmer, S. et al. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 12, 10558–10582 (2021).$$v12$$y2021
000613830 999C5 $$1T Megyes$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp048838m$$p7261 -$$tJ. Phys. Chem. A$$uMegyes, T., Grósz, T., Radnai, T., Bakó, I. & Pálinkás, G. Solvation of calcium ion in polar solvents: an X-ray diffraction and ab initio study. J. Phys. Chem. A 108, 7261–7271 (2004).$$v108$$y2004
000613830 999C5 $$1V-T Pham$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4775588$$p044201 -$$tJ. Chem. Phys.$$uPham, V.-T. & Fulton, J. L. Ion-pairing in aqueous CaCl2 and RbBr solutions: simultaneous structural refinement of XAFS and XRD data. J. Chem. Phys. 138, 044201 (2013).$$v138$$y2013
000613830 999C5 $$1YS Badyal$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp046476c$$p11819 -$$tJ. Phys. Chem. A$$uBadyal, Y. S., Barnes, A. C., Cuello, G. J. & Simonson, J. M. Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solution. II: insights into longer range order from neutron diffraction isotope substitution. J. Phys. Chem. A 108, 11819–11827 (2004).$$v108$$y2004
000613830 999C5 $$1WW Rudolph$$2Crossref$$9-- missing cx lookup --$$a10.1039/c2dt31718d$$p3919 -$$tDalton Trans.$$uRudolph, W. W. & Irmer, G. Hydration of the calcium(ii) ion in an aqueous solution of common anions (ClO4−, Cl−, Br−, and $${{{{\rm{NO}}}}}_{3}^{-}$$). Dalton Trans. 42, 3919–3935 (2013).$$v42$$y2013
000613830 999C5 $$1B Winter$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp030263q$$p2625 -$$tJ. Phys. Chem. A$$uWinter, B. et al. Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 108, 2625–2632 (2004).$$v108$$y2004
000613830 999C5 $$1D Nordlund$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cplett.2008.04.096$$p86 -$$tChem. Phys. Lett.$$uNordlund, D. et al. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory. Chem. Phys. Lett. 460, 86–92 (2008).$$v460$$y2008
000613830 999C5 $$1K Nishizawa$$2Crossref$$9-- missing cx lookup --$$a10.1039/C0CP01636E$$p413 -$$tPhys. Chem. Chem. Phys.$$uNishizawa, K. et al. High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys. Chem. Chem. Phys. 13, 413–417 (2011).$$v13$$y2011
000613830 999C5 $$1NA Hewish$$2Crossref$$9-- missing cx lookup --$$a10.1038/297138a0$$p138 -$$tNature$$uHewish, N. A., Neilson, G. W. & Enderby, J. E. Environment of Ca2+ ions in aqueous solvent. Nature 297, 138–139 (1982).$$v297$$y1982
000613830 999C5 $$1M Mosaferi$$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.3c14570$$p9836 -$$tJ. Am. Chem. Soc.$$uMosaferi, M. et al. Fingerprint of dipole moment orientation of water molecules in Cu2+ aqueous solution probed by X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 146, 9836–9850 (2024).$$v146$$y2024
000613830 999C5 $$1B Credidio$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CP03165A$$p1310 -$$tPhys. Chem. Chem. Phys.$$uCredidio, B. et al. Quantitative electronic structure and work-function changes of liquid water induced by solute. Phys. Chem. Chem. Phys. 24, 1310–1325 (2022).$$v24$$y2022
000613830 999C5 $$1J Viefhaus$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2012.10.110$$p151 -$$tNucl. Instrum. Methods Phys. Res. Sect. A$$uViefhaus, J. et al. The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. Sect. A 710, 151–154 (2013).$$v710$$y2013