001     613737
005     20250723105627.0
024 7 _ |a 10.1016/j.jallcom.2025.179020
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05625
|2 datacite_doi
024 7 _ |a WOS:001426750500001
|2 WOS
024 7 _ |a openalex:W4407172165
|2 openalex
037 _ _ |a PUBDB-2024-05625
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Wang, Bihan
|0 P:(DE-H253)PIP1081817
|b 0
245 _ _ |a Resolving the pressure induced ‘self-insertion’ in skutterudite CoSb3
260 _ _ |a Lausanne
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741354457_84498
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CoSb3 belongs to the skutterudite family of compounds and serves as a crucial platform for the exploration of thermoelectric materials. Under compression it undergoes a ‘self-insertion’ isostructural transition resulting in a peculiar redistribution of large Sb atoms between different crystallographic sites. We conducted a comprehensive investigation of CoSb3 structural phase stability up to 70 GPa using single crystal material in the regimes of conventional single crystal X-ray diffraction and the X-ray scattering focused on measuring Bragg peak at high resolution (including elements of Bragg Coherent Diffraction Imaging). We explore the compression behavior of CoSb3 in three different pressure transmitting media (PTM) and address several important topics: influence of various PTMs and nonhydrostatic stresses on the strongly correlated system of CoSb3, including the ‘self-insertion’ crossover, phase stability of CoSb3, the compound’s polymorphism, its crystal chemistry, and its variation under pressure. Among other important observations, we track population of Sb atom within CoSb3 dodecahedral sites on compression, during the process of ‘self-insertion’, and on decompression. We detect that ‘self-insertion’ may not only reduce the compressibility, but also make it negative. Finally, but not the least, we report that the ‘self-insertion’ crossover is an important step preceding a previously unknown phase transformation from a cubic Im3 ̅ CoSb3 into a trigonal R3 ̅ occurring above 40 GPa, and discuss the distinctive behavior of CoSb3 phases and their structural frameworks.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
693 _ _ |a Nanolab
|e DESY NanoLab: Sample Preparation
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-01-20150101
|5 EXP:(DE-H253)Nanolab-01-20150101
|x 1
700 1 _ |a Pakhomova, Anna
|0 P:(DE-H253)PIP1024093
|b 1
700 1 _ |a Khandarkhaeva, Saiana
|0 P:(DE-H253)PIP1080485
|b 2
700 1 _ |a Pillaca, Mirtha
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gille, Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ren, Zhe
|0 P:(DE-H253)PIP1080091
|b 5
700 1 _ |a Lapkin, Dmitrii
|0 P:(DE-H253)PIP1081202
|b 6
|u desy
700 1 _ |a Assalauova, Dameli
|0 P:(DE-H253)PIP1026644
|b 7
|u desy
700 1 _ |a Alexeev, Pavel
|0 P:(DE-H253)PIP1019099
|b 8
700 1 _ |a Sergeev, Ilya
|0 P:(DE-H253)PIP1016663
|b 9
|u desy
700 1 _ |a Kulkarni, Satishkumar
|0 P:(DE-H253)PIP1025923
|b 10
|u desy
700 1 _ |a Weng, Tsu-Chien
|0 P:(DE-H253)PIP1082630
|b 11
700 1 _ |a Sprung, Michael
|0 P:(DE-H253)PIP1007141
|b 12
|u desy
700 1 _ |a Liermann, Hanns-Peter
|0 P:(DE-H253)PIP1007496
|b 13
|u desy
700 1 _ |a Vartaniants, Ivan
|0 P:(DE-H253)PIP1003481
|b 14
|u desy
700 1 _ |a Glazyrin, Konstantin
|0 P:(DE-H253)PIP1019654
|b 15
|e Corresponding author
|u desy
773 _ _ |a 10.1016/j.jallcom.2025.179020
|g Vol. 1017, p. 179020 -
|0 PERI:(DE-600)2012675-X
|p 179020
|t Journal of alloys and compounds
|v 1017
|y XXXX
|x 0925-8388
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S092583882500578X
856 4 _ |u https://bib-pubdb1.desy.de/record/613737/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/613737/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/613737/files/Requests.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/613737/files/1-s2.0-S092583882500578X-main.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/613737/files/Requests.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/613737/files/1-s2.0-S092583882500578X-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:613737
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1081817
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1024093
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1080485
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1080091
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1081202
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1081202
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1026644
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1026644
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1026644
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 8
|6 P:(DE-H253)PIP1019099
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1019099
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1019099
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1016663
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1016663
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1025923
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1082630
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 11
|6 P:(DE-H253)PIP1082630
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1007141
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1007141
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1007496
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1007496
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1003481
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 14
|6 P:(DE-H253)PIP1003481
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1019654
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1019654
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ALLOY COMPD : 2022
|d 2025-01-02
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b PHYS REV X : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-07-26T15:01:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-07-26T15:01:47Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J ALLOY COMPD : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 2
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 3
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21