001     613729
005     20250723172318.0
024 7 _ |a 10.1111/mmi.15205
|2 doi
024 7 _ |a 0950-382X
|2 ISSN
024 7 _ |a 1365-2958
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-05617
|2 datacite_doi
024 7 _ |a altmetric:157309612
|2 altmetric
024 7 _ |a pmid:38063129
|2 pmid
024 7 _ |a WOS:001119243700001
|2 WOS
024 7 _ |a openalex:W4389488661
|2 openalex
037 _ _ |a PUBDB-2024-05617
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Franzkoch, Rico
|b 0
245 _ _ |a Resolving exit strategies of mycobacteria in Dictyostelium discoideum by combining high‐pressure freezing with 3D ‐correlative light and electron microscopy
260 _ _ |a Oxford [u.a.]
|c 2024
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1728900378_4005848
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system. Despite the availability of well-established light and advanced electron microscopy techniques in this system, a correlative approach integrating both methods with near-native ultrastructural preservation is currently lacking. This is most likely due to the low ability of D. discoideum to adhere to surfaces, which results in cell loss even after fixation. To address this problem, we improved the adhesion of cells and developed a straightforward and convenient workflow for 3D-correlative light and electron microscopy. This approach includes high-pressure freezing, which is an excellent technique for preserving membranes. Thus, our method allows to monitor the ultrastructural aspects of vacuole escape which is of central importance for the survival and dissemination of bacterial pathogens.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)531703706 - Entschlüsselung der molekularen Mechanismen des Austritts von Orientia tsutsugamushi aus der Wirtszelle (531703706)
|0 G:(GEPRIS)531703706
|c 531703706
|x 1
536 _ _ |a SFB 1557 P01 - Umbau und Nutzung der Lipid-Trafficking-Maschinerie der Wirtszelle durch pathogene Mykobakterien (P01) (516902060)
|0 G:(GEPRIS)516902060
|c 516902060
|x 2
536 _ _ |a SFB 944 P25 - Funktionale Bedeutung des Lipidtransports für die mykobakterielle Infektion in Dictyostelium (P25) (442222172)
|0 G:(GEPRIS)442222172
|c 442222172
|x 3
542 _ _ |i 2023-12-08
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Anand, Aby
|b 1
700 1 _ |a Breitsprecher, Leonhard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Psathaki, Olympia E.
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Barisch, Caroline
|0 P:(DE-H253)PIP1106715
|b 4
|e Corresponding author
773 1 8 |a 10.1111/mmi.15205
|b Wiley
|d 2023-12-08
|n 3
|p 593-604
|3 journal-article
|2 Crossref
|t Molecular Microbiology
|v 121
|y 2023
|x 0950-382X
773 _ _ |a 10.1111/mmi.15205
|g Vol. 121, no. 3, p. 593 - 604
|0 PERI:(DE-600)1501537-3
|n 3
|p 593-604
|t Molecular microbiology
|v 121
|y 2023
|x 0950-382X
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/613729/files/10.1111_mmi.15205.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/613729/files/10.1111_mmi.15205.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:613729
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 4
|6 P:(DE-H253)PIP1106715
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL MICROBIOL : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
920 1 _ |0 I:(DE-H253)CSSB-FZB-CB-20230819
|k CSSB-FZB-CB
|l CSSB-Forschungszentrum Borstel
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-FZB-CB-20230819
980 1 _ |a FullTexts
999 C 5 |a 10.7554/eLife.40712
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Ader N.R.
|y 2017
|2 Crossref
|t Methods in cell biology
|o Ader N.R. Methods in cell biology 2017
999 C 5 |a 10.1128/mbio.00943-23
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1515/hsz-2022-0321
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-1-4939-2450-9_23
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/cmi.12437
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.ppat.1006095
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pbio.1002340
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1242/jcs.252973
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Bozzola J.
|y 2014
|2 Crossref
|t Electron microscopy: methods and protocols
|o Bozzola J. Electron microscopy: methods and protocols 2014
999 C 5 |1 Brown E.
|y 2012
|2 Crossref
|t Methods in cell biology
|o Brown E. Methods in cell biology 2012
999 C 5 |a 10.1093/femsre/fuz006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fcimb.2017.00529
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41592-023-01861-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1128/EC.00155-08
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1423318112
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1169381
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/j.1462-5822.2007.00993.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Heiligenstein X.
|y 2021
|2 Crossref
|t Methods in cell biology
|o Heiligenstein X. Methods in cell biology 2021
999 C 5 |1 Humbel B.
|y 1985
|2 Crossref
|o Humbel B. 1985
999 C 5 |a 10.1242/jcs.021576
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Kaneko Y.
|y 1995
|2 Crossref
|o Kaneko Y. 1995
999 C 5 |a 10.1007/978-1-0716-0791-6_10
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/mps3030047
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.129.1.179
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1006/jsbi.1996.0013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1101/2023.05.11.540445
|9 -- missing cx lookup --
|2 Crossref
|u Krentzel D. Elphick M. Domart M.‐C. Peddie C.J. Laine R.F. Henriques R.et al. (2023)CLEM‐reg: an automated point cloud based registration algorithm for correlative light and volume electron microscopy.bioRxiv 2023.05.11.540445.
999 C 5 |a 10.1083/jcb.201009037
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/microorganisms8091298
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1172/jci.insight.136937
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fcimb.2017.00191
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.yexcr.2008.02.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.ppat.1007501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1504459112
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.66.1.198
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.2144/000112226
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fcell.2022.910736
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-642-72815-0_8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0960-9822(98)70159-9
|9 -- missing cx lookup --
|2 Crossref
|u Pang K.M. Lee E. Knecht D.A. (1998).Use of a fusion protein between GFP and an actin‐binding domain to visualize transient filamentous‐actin structures.Current Biology 8 405–408.
999 C 5 |a 10.3390/v7122940
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1101/2021.01.18.427072
|9 -- missing cx lookup --
|2 Crossref
|u Ronchi P. Machado P. D'imprima E. Mizzon G. Best B.T. Cassella L.et al. (2021)Fluorescence‐based 3D targeting of FIB‐SEM acquisition of small volumes in large samples.bioRxiv 2021.01.18.427072.
999 C 5 |a 10.1242/jcs.188433
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.202209127
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.91.3.695
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jsb.2007.09.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ydbio.2011.01.014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Vanhecke D.
|y 2008
|2 Crossref
|t Methods in cell biology
|o Vanhecke D. Methods in cell biology 2008
999 C 5 |a 10.1111/j.1365-2818.2008.01989.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00418-012-1020-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1242/jcs.108.4.1519
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.tim.2018.11.011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.ppat.1005602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cm.970270102
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21