001     613581
005     20250715171455.0
024 7 _ |a 10.1038/s42003-024-06676-7
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05610
|2 datacite_doi
024 7 _ |a altmetric:166475137
|2 altmetric
024 7 _ |a pmid:39155318
|2 pmid
024 7 _ |a WOS:001293192000001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4401672335
037 _ _ |a PUBDB-2024-05610
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Susat, Julian
|b 0
245 _ _ |a Neolithic Yersinia pestis infections in humans and a dog
260 _ _ |a London
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725963480_1902067
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the CRC 1266 – project number 290391021.
520 _ _ |a Yersinia pestis has been infecting humans since the Late Neolithic (LN). Whether those early infections were isolated zoonoses or initiators of a pandemic remains unclear. We report Y. pestis infections in two individuals (of 133) from the LN necropolis at Warburg (Germany, 5300–4900 cal BP). Our analyses show that the two genomes belong to distinct strains and reflect independent infection events. All LN genomes known today (n = 4) are basal in the phylogeny and represent separate lineages that probably originated in different animal hosts. In the LN, an opening of the landscape resulted in the introduction of new rodent species, which may have acted as Y. pestis reservoirs. Coincidentally, the number of dogs increased, possibly leading to Y. pestis infections in canines. Indeed, we detect Y. pestis in an LN dog. Collectively, our data suggest that Y. pestis frequently entered human settlements at the time without causing significant outbreaks.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a DFG project 290391021 - SFB 1266: Mensch-Umwelt Wechselwirkungen in Prähistorischen und Archaischen Gesellschaften (290391021)
|0 G:(GEPRIS)290391021
|c 290391021
|x 1
542 _ _ |i 2024-08-18
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-08-18
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Haller-Caskie, Magdalena
|0 0000-0003-3677-1504
|b 1
700 1 _ |a Bonczarowska, Joanna H.
|0 0000-0003-0761-9597
|b 2
700 1 _ |a da Silva, Nicolas A.
|0 0000-0002-1537-3286
|b 3
700 1 _ |a Schierhold, Kerstin
|0 0000-0002-6136-6087
|b 4
700 1 _ |a Rind, Michael M.
|b 5
700 1 _ |a Schmölcke, Ulrich
|0 0000-0002-8974-449X
|b 6
700 1 _ |a Kirleis, Wiebke
|b 7
700 1 _ |a Sondermann, Holger
|0 P:(DE-H253)PIP1093629
|b 8
700 1 _ |a Rinne, Christoph
|b 9
700 1 _ |a Müller, Johannes
|b 10
700 1 _ |a Nebel, Almut
|b 11
700 1 _ |a Krause-Kyora, Ben
|0 P:(DE-H253)PIP1010151
|b 12
|e Corresponding author
773 1 8 |a 10.1038/s42003-024-06676-7
|b Springer Science and Business Media LLC
|d 2024-08-18
|n 1
|p 1013
|3 journal-article
|2 Crossref
|t Communications Biology
|v 7
|y 2024
|x 2399-3642
773 _ _ |a 10.1038/s42003-024-06676-7
|g Vol. 7, no. 1, p. 1013
|0 PERI:(DE-600)2919698-X
|n 1
|p 1013
|t Communications biology
|v 7
|y 2024
|x 2399-3642
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/613581/files/final_document.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/613581/files/final_document.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:613581
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1093629
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 8
|6 P:(DE-H253)PIP1093629
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1010151
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:12Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:36:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-H253)CSSB-DESY-HS-20210521
|k CSSB-DESY-HS
|l Strukturelle Mikrobiologie CSSB
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-DESY-HS-20210521
980 1 _ |a FullTexts
999 C 5 |a 10.1128/CMR.00044-19
|9 -- missing cx lookup --
|1 R Barbieri
|p e00044 -
|2 Crossref
|u Barbieri, R. et al. Yersinia pestis: the natural history of plague. Clin. Microbiol. Rev. 34, e00044–19 (2020).
|t Clin. Microbiol. Rev.
|v 34
|y 2020
999 C 5 |a 10.1016/j.celrep.2021.109278
|9 -- missing cx lookup --
|1 J Susat
|p 109278 -
|2 Crossref
|u Susat, J. et al. A 5,000 year-old hunter-gatherer already plagued by Yersinia pestis. Cell Rep. 35, 109278 (2021).
|t Cell Rep.
|v 35
|y 2021
999 C 5 |a 10.1016/j.cell.2018.11.005
|9 -- missing cx lookup --
|1 N Rascovan
|p 295 -
|2 Crossref
|u Rascovan, N. et al. Emergence and spread of basal lineages of Yersinia pestis during the Neolithic decline. Cell 176, 295–305.e10 (2019).
|t Cell
|v 176
|y 2019
999 C 5 |a 10.1073/pnas.2116722119
|9 -- missing cx lookup --
|1 A Andrades Valtueña
|p e2116722119 -
|2 Crossref
|u Andrades Valtueña, A. et al. Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl Acad. Sci. USA 119, e2116722119 (2022).
|t Proc. Natl Acad. Sci. USA
|v 119
|y 2022
999 C 5 |a 10.1016/j.chom.2014.04.003
|9 -- missing cx lookup --
|1 Y-C Sun
|p 578 -
|2 Crossref
|u Sun, Y.-C., Jarrett, C. O., Bosio, C. F. & Hinnebusch, B. J. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe 15, 578–586 (2014).
|t Cell Host Microbe
|v 15
|y 2014
999 C 5 |a 10.1038/s41467-023-38393-w
|1 P Swali
|9 -- missing cx lookup --
|2 Crossref
|u Swali, P. et al. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat. Commun. 14, 2930 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |2 Crossref
|u Raetzel-Fabian, D. Absolute Chronologie. In Die Kollektivgäber-Nekropole Warburg I-V, Bodenaltertümer Westfalens (ed. Günther, Klaus) 165–178 (Mainz, 1997).
999 C 5 |2 Crossref
|u Löwen, H. Menschenreste. In Die Kollektivgäber-Nekropole Warburg I-V, Bodenaltertümer Westfalens (ed. Günther, Klaus) 39−47; 81−91; 112−128; 191−194 (Mainz, 1997).
999 C 5 |a 10.1038/s42003-020-01627-4
|9 -- missing cx lookup --
|1 A Immel
|p 113 -
|2 Crossref
|u Immel, A. et al. Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Commun. Biol. 4, 113 (2021).
|t Commun. Biol.
|v 4
|y 2021
999 C 5 |1 JH Bonczarowska
|y 2023
|2 Crossref
|u Bonczarowska, J. H. et al. Ancient Yersinia pestis genomes lack the virulence-associated YpfΦ prophage present in modern pandemic strains. Proc. Biol. Sci. 290, 20230622 (2023).
999 C 5 |a 10.1038/s41586-022-04824-9
|9 -- missing cx lookup --
|1 A Bergström
|p 313 -
|2 Crossref
|u Bergström, A. et al. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 607, 313–320 (2022).
|t Nature
|v 607
|y 2022
999 C 5 |a 10.1126/science.aba9572
|9 -- missing cx lookup --
|1 A Bergström
|p 557 -
|2 Crossref
|u Bergström, A. et al. Origins and genetic legacy of prehistoric dogs. Science 370, 557–564 (2020).
|t Science
|v 370
|y 2020
999 C 5 |a 10.1038/ncomms16082
|1 LR Botigué
|9 -- missing cx lookup --
|2 Crossref
|u Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the early Neolithic. Nat. Commun. 8, 16082 (2017).
|t Nat. Commun.
|v 8
|y 2017
999 C 5 |a 10.1126/science.aaf3161
|9 -- missing cx lookup --
|1 LAF Frantz
|p 1228 -
|2 Crossref
|u Frantz, L. A. F. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).
|t Science
|v 352
|y 2016
999 C 5 |a 10.1098/rsbl.2018.0286
|9 -- missing cx lookup --
|1 M Ollivier
|p 20180286 -
|2 Crossref
|u Ollivier, M. et al. Dogs accompanied humans during the Neolithic expansion into Europe. Biol. Lett. 14, 20180286 (2018).
|t Biol. Lett.
|v 14
|y 2018
999 C 5 |a 10.1002/ece3.3924
|9 -- missing cx lookup --
|1 A Margaryan
|p 3534 -
|2 Crossref
|u Margaryan, A. et al. Ancient pathogen DNA in human teeth and petrous bones. Ecol. Evol. 8, 3534–3542 (2018).
|t Ecol. Evol.
|v 8
|y 2018
999 C 5 |a 10.1038/s41576-019-0119-1
|9 -- missing cx lookup --
|1 MA Spyrou
|p 323 -
|2 Crossref
|u Spyrou, M. A., Bos, K. I., Herbig, A. & Krause, J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20, 323–340 (2019).
|t Nat. Rev. Genet.
|v 20
|y 2019
999 C 5 |a 10.1186/s13059-022-02806-8
|1 JH Bonczarowska
|9 -- missing cx lookup --
|2 Crossref
|u Bonczarowska, J. H. et al. Pathogen genomics study of an early medieval community in Germany reveals extensive co-infections. Genome Biol. 23, 250 (2022).
|t Genome Biol.
|v 23
|y 2022
999 C 5 |a 10.1016/j.isci.2021.102419
|9 -- missing cx lookup --
|1 M Haller
|p 102419 -
|2 Crossref
|u Haller, M. et al. Mass burial genomics reveals outbreak of enteric paratyphoid fever in the late medieval trade city Lübeck. iScience 24, 102419 (2021).
|t iScience
|v 24
|y 2021
999 C 5 |a 10.1111/gcb.12737
|9 -- missing cx lookup --
|1 AK Trondman
|p 676 -
|2 Crossref
|u Trondman, A. K. et al. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Glob. Change Biol. 21, 676–697 (2015).
|t Glob. Change Biol.
|v 21
|y 2015
999 C 5 |a 10.1111/gcb.12776
|9 -- missing cx lookup --
|1 RM Fyfe
|p 1197 -
|2 Crossref
|u Fyfe, R. M., Woodbridge, J. & Roberts, N. From forest to farmland: pollen‐inferred land cover change across Europe using the pseudobiomization approach. Glob. Change Biol. 21, 1197–1212 (2015).
|t Glob. Change Biol.
|v 21
|y 2015
999 C 5 |a 10.3389/fpls.2018.00253
|9 -- missing cx lookup --
|1 M Zanon
|p 253 -
|2 Crossref
|u Zanon, M., Davis, B. A. S., Marquer, L., Brewer, S. & Kaplan, J. O. European forest cover during the past 12,000 years: a palynological reconstruction based on modern analogs and remote sensing. Front. Plant Sci. 9, 253 (2018).
|t Front. Plant Sci.
|v 9
|y 2018
999 C 5 |a 10.5194/essd-14-1581-2022
|9 -- missing cx lookup --
|1 E Githumbi
|p 1581 -
|2 Crossref
|u Githumbi, E. et al. European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials. Earth Syst. Sci. Data 14, 1581–1619 (2022).
|t Earth Syst. Sci. Data
|v 14
|y 2022
999 C 5 |2 Crossref
|u Schmölcke, U. Nutztierhaltung, Jagd und Fischfang. Zur Nahrungsmittelwirtschaft des frühgeschichtlichen Handelsplatzes von Groß Strömkendorf, Landkreis Nordwestmecklenburg. Beiträge zur Ur- und Frühgeschichte Mecklenburg-Vorpommerns 43 (Lübstorf, 2004).
999 C 5 |a 10.1073/pnas.2204044119
|9 -- missing cx lookup --
|1 P Slavin
|p e2204044119 -
|2 Crossref
|u Slavin, P. & Sebbane, F. Emergence and spread of ancestral Yersinia pestis in Late Neolithic and Bronze Age Eurasia, ca. 5,000 to 2,500y B.P. Proc. Natl Acad. Sci. USA 119, e2204044119 (2022).
|t Proc. Natl Acad. Sci. USA
|v 119
|y 2022
999 C 5 |a 10.3201/eid2512.191081
|9 -- missing cx lookup --
|1 SB Campbell
|p 2270 -
|2 Crossref
|u Campbell, S. B., Nelson, C. A., Hinckley, A. F. & Kugeler, K. J. Animal exposure and human plague, United States, 1970–2017. Emerg. Infect. Dis. 25, 2270–2273 (2019).
|t Emerg. Infect. Dis.
|v 25
|y 2019
999 C 5 |2 Crossref
|u Schierhold, K. Studien zur Hessisch-Westfälischen Megalithik: Forschungsstand und -perspektiven im europäischen Kontext. Münstersche Beiträge zur ur- und frühgeschichtlichen Archäologie 6 (Leidorf, 2012).
999 C 5 |1 J Ewersen
|y 2018
|2 Crossref
|u Ewersen, J., Ziegler, S., Ramminger, B. & Schmölcke, U. Stable isotopic ratios from Mesolithic and Neolithic canids as an indicator of human economic and ritual activity. J. Archaeol. Sci. Rep. 17, 346–357 (2018).
999 C 5 |a 10.1515/9783050069456
|9 -- missing cx lookup --
|2 Crossref
|u Benecke, N. Archäozoologische Studien zur Entwicklung der Haustierhaltung in Mitteleuropa und Südskandinavien von den Anfängen bis zum ausgehenden Mittelalter (De Gruyter Akademie Forschung, 1994, Reprint 2015 Edn).
999 C 5 |a 10.2460/javma.244.10.1176
|9 -- missing cx lookup --
|1 MC Nichols
|p 1176 -
|2 Crossref
|u Nichols, M. C. et al. Yersinia pestis infection in dogs: 62 cases (2003-2011). J. Am. Vet. Med. Assoc. 244, 1176–1180 (2014).
|t J. Am. Vet. Med. Assoc.
|v 244
|y 2014
999 C 5 |a 10.1126/science.289.5482.1139b
|9 -- missing cx lookup --
|1 A Cooper
|p 1139 -
|2 Crossref
|u Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).
|t Science
|v 289
|y 2000
999 C 5 |a 10.1098/rstb.2013.0624
|9 -- missing cx lookup --
|1 N Rohland
|p 20130624 -
|2 Crossref
|u Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20130624 (2015).
|t Philos. Trans. R. Soc. Lond. B. Biol. Sci.
|v 370
|y 2015
999 C 5 |a 10.1038/s41467-018-03857-x
|1 B Krause-Kyora
|9 -- missing cx lookup --
|2 Crossref
|u Krause-Kyora, B. et al. Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nat. Commun. 9, 1569 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1186/s13059-016-0918-z
|1 A Peltzer
|9 -- missing cx lookup --
|2 Crossref
|u Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
|t Genome Biol.
|v 17
|y 2016
999 C 5 |a 10.1038/s41559-017-0446-6
|9 -- missing cx lookup --
|1 ÅJ Vågene
|p 520 -
|2 Crossref
|u Vågene, Å. J. et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018).
|t Nat. Ecol. Evol.
|v 2
|y 2018
999 C 5 |a 10.1093/nar/gkv1189
|9 -- missing cx lookup --
|1 NA O’Leary
|p D733 -
|2 Crossref
|u O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
|t Nucleic Acids Res.
|v 44
|y 2016
999 C 5 |a 10.1101/gr.5969107
|9 -- missing cx lookup --
|1 DH Huson
|p 377 -
|2 Crossref
|u Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).
|t Genome Res.
|v 17
|y 2007
999 C 5 |a 10.1093/bioinformatics/btab190
|9 -- missing cx lookup --
|1 J Neukamm
|p 3652 -
|2 Crossref
|u Neukamm, J., Peltzer, A. & Nieselt, K. DamageProfiler: fast damage pattern calculation for ancient DNA. Bioinformatics 37, 3652–3653 (2021).
|t Bioinformatics
|v 37
|y 2021
999 C 5 |a 10.4161/fly.19695
|9 -- missing cx lookup --
|1 P Cingolani
|p 80 -
|2 Crossref
|u Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly. (Austin) 6, 80–92 (2012).
|t Fly. (Austin)
|v 6
|y 2012
999 C 5 |a 10.1093/bioinformatics/btq033
|9 -- missing cx lookup --
|1 AR Quinlan
|p 841 -
|2 Crossref
|u Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
|t Bioinformatics
|v 26
|y 2010
999 C 5 |2 Crossref
|u RStudio Team. RStudio: Integrated Development Environment for R. http://www.rstudio.com (2021).
999 C 5 |a 10.1038/s41598-020-71530-9
|1 J Susat
|9 -- missing cx lookup --
|2 Crossref
|u Susat, J. et al. Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci. Rep. 10, 14628 (2020).
|t Sci. Rep.
|v 10
|y 2020
999 C 5 |a 10.1371/journal.pcbi.1006650
|9 -- missing cx lookup --
|1 R Bouckaert
|p e1006650 -
|2 Crossref
|u Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).
|t PLoS Comput. Biol.
|v 15
|y 2019
999 C 5 |a 10.1186/1471-2148-7-214
|9 -- missing cx lookup --
|1 AJ Drummond
|p 214 -
|2 Crossref
|u Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
|t BMC Evol. Biol.
|v 7
|y 2007
999 C 5 |a 10.1093/sysbio/syy032
|9 -- missing cx lookup --
|1 A Rambaut
|p 901 -
|2 Crossref
|u Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
|t Syst. Biol.
|v 67
|y 2018
999 C 5 |a 10.1038/nature16152
|9 -- missing cx lookup --
|1 I Mathieson
|p 499 -
|2 Crossref
|u Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
|t Nature
|v 528
|y 2015
999 C 5 |a 10.1101/2023.04.06.535797
|9 -- missing cx lookup --
|2 Crossref
|u Mallick, S. et al. The Allen Ancient DNA Resource (AADR): a curated compendium of ancient human genomes. bioRxiv https://doi.org/10.1101/2023.04.06.535797 (2023).
999 C 5 |a 10.1371/journal.pgen.0020190
|9 -- missing cx lookup --
|1 N Patterson
|p e190 -
|2 Crossref
|u Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
|t PLoS Genet.
|v 2
|y 2006
999 C 5 |a 10.1101/gr.094052.109
|9 -- missing cx lookup --
|1 DH Alexander
|p 1655 -
|2 Crossref
|u Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
|t Genome Res.
|v 19
|y 2009
999 C 5 |a 10.1534/genetics.112.145037
|9 -- missing cx lookup --
|1 N Patterson
|p 1065 -
|2 Crossref
|u Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
|t Genetics
|v 192
|y 2012
999 C 5 |a 10.1371/journal.pone.0195491
|9 -- missing cx lookup --
|1 JM Monroy Kuhn
|p e0195491 -
|2 Crossref
|u Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).
|t PLoS ONE
|v 13
|y 2018


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21