000613581 001__ 613581 000613581 005__ 20250715171455.0 000613581 0247_ $$2doi$$a10.1038/s42003-024-06676-7 000613581 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05610 000613581 0247_ $$2altmetric$$aaltmetric:166475137 000613581 0247_ $$2pmid$$apmid:39155318 000613581 0247_ $$2WOS$$aWOS:001293192000001 000613581 0247_ $$2openalex$$aopenalex:W4401672335 000613581 037__ $$aPUBDB-2024-05610 000613581 041__ $$aEnglish 000613581 082__ $$a570 000613581 1001_ $$aSusat, Julian$$b0 000613581 245__ $$aNeolithic Yersinia pestis infections in humans and a dog 000613581 260__ $$aLondon$$bSpringer Nature$$c2024 000613581 3367_ $$2DRIVER$$aarticle 000613581 3367_ $$2DataCite$$aOutput Types/Journal article 000613581 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725963480_1902067 000613581 3367_ $$2BibTeX$$aARTICLE 000613581 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000613581 3367_ $$00$$2EndNote$$aJournal Article 000613581 500__ $$aThis study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the CRC 1266 – project number 290391021. 000613581 520__ $$aYersinia pestis has been infecting humans since the Late Neolithic (LN). Whether those early infections were isolated zoonoses or initiators of a pandemic remains unclear. We report Y. pestis infections in two individuals (of 133) from the LN necropolis at Warburg (Germany, 5300–4900 cal BP). Our analyses show that the two genomes belong to distinct strains and reflect independent infection events. All LN genomes known today (n = 4) are basal in the phylogeny and represent separate lineages that probably originated in different animal hosts. In the LN, an opening of the landscape resulted in the introduction of new rodent species, which may have acted as Y. pestis reservoirs. Coincidentally, the number of dogs increased, possibly leading to Y. pestis infections in canines. Indeed, we detect Y. pestis in an LN dog. Collectively, our data suggest that Y. pestis frequently entered human settlements at the time without causing significant outbreaks. 000613581 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0 000613581 536__ $$0G:(GEPRIS)290391021$$aDFG project 290391021 - SFB 1266: Mensch-Umwelt Wechselwirkungen in Prähistorischen und Archaischen Gesellschaften (290391021)$$c290391021$$x1 000613581 542__ $$2Crossref$$i2024-08-18$$uhttps://creativecommons.org/licenses/by/4.0 000613581 542__ $$2Crossref$$i2024-08-18$$uhttps://creativecommons.org/licenses/by/4.0 000613581 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000613581 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000613581 7001_ $$00000-0003-3677-1504$$aHaller-Caskie, Magdalena$$b1 000613581 7001_ $$00000-0003-0761-9597$$aBonczarowska, Joanna H.$$b2 000613581 7001_ $$00000-0002-1537-3286$$ada Silva, Nicolas A.$$b3 000613581 7001_ $$00000-0002-6136-6087$$aSchierhold, Kerstin$$b4 000613581 7001_ $$aRind, Michael M.$$b5 000613581 7001_ $$00000-0002-8974-449X$$aSchmölcke, Ulrich$$b6 000613581 7001_ $$aKirleis, Wiebke$$b7 000613581 7001_ $$0P:(DE-H253)PIP1093629$$aSondermann, Holger$$b8 000613581 7001_ $$aRinne, Christoph$$b9 000613581 7001_ $$aMüller, Johannes$$b10 000613581 7001_ $$aNebel, Almut$$b11 000613581 7001_ $$0P:(DE-H253)PIP1010151$$aKrause-Kyora, Ben$$b12$$eCorresponding author 000613581 77318 $$2Crossref$$3journal-article$$a10.1038/s42003-024-06676-7$$bSpringer Science and Business Media LLC$$d2024-08-18$$n1$$p1013$$tCommunications Biology$$v7$$x2399-3642$$y2024 000613581 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-024-06676-7$$gVol. 7, no. 1, p. 1013$$n1$$p1013$$tCommunications biology$$v7$$x2399-3642$$y2024 000613581 8564_ $$uhttps://bib-pubdb1.desy.de/record/613581/files/final_document.pdf$$yOpenAccess 000613581 8564_ $$uhttps://bib-pubdb1.desy.de/record/613581/files/final_document.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000613581 909CO $$ooai:bib-pubdb1.desy.de:613581$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000613581 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093629$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY 000613581 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1093629$$aCentre for Structural Systems Biology$$b8$$kCSSB 000613581 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010151$$aExternal Institute$$b12$$kExtern 000613581 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0 000613581 9141_ $$y2024 000613581 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27 000613581 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27 000613581 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27 000613581 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27 000613581 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000613581 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000613581 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27 000613581 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2022$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:12Z 000613581 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:12Z 000613581 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:12Z 000613581 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11 000613581 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN BIOL : 2022$$d2024-12-11 000613581 9201_ $$0I:(DE-H253)CSSB-DESY-HS-20210521$$kCSSB-DESY-HS$$lStrukturelle Mikrobiologie CSSB$$x0 000613581 980__ $$ajournal 000613581 980__ $$aVDB 000613581 980__ $$aUNRESTRICTED 000613581 980__ $$aI:(DE-H253)CSSB-DESY-HS-20210521 000613581 9801_ $$aFullTexts 000613581 999C5 $$1R Barbieri$$2Crossref$$9-- missing cx lookup --$$a10.1128/CMR.00044-19$$pe00044 -$$tClin. Microbiol. Rev.$$uBarbieri, R. et al. Yersinia pestis: the natural history of plague. Clin. Microbiol. Rev. 34, e00044–19 (2020).$$v34$$y2020 000613581 999C5 $$1J Susat$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2021.109278$$p109278 -$$tCell Rep.$$uSusat, J. et al. A 5,000 year-old hunter-gatherer already plagued by Yersinia pestis. Cell Rep. 35, 109278 (2021).$$v35$$y2021 000613581 999C5 $$1N Rascovan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2018.11.005$$p295 -$$tCell$$uRascovan, N. et al. Emergence and spread of basal lineages of Yersinia pestis during the Neolithic decline. Cell 176, 295–305.e10 (2019).$$v176$$y2019 000613581 999C5 $$1A Andrades Valtueña$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2116722119$$pe2116722119 -$$tProc. Natl Acad. Sci. USA$$uAndrades Valtueña, A. et al. Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl Acad. Sci. USA 119, e2116722119 (2022).$$v119$$y2022 000613581 999C5 $$1Y-C Sun$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.chom.2014.04.003$$p578 -$$tCell Host Microbe$$uSun, Y.-C., Jarrett, C. O., Bosio, C. F. & Hinnebusch, B. J. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe 15, 578–586 (2014).$$v15$$y2014 000613581 999C5 $$1P Swali$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-38393-w$$tNat. Commun.$$uSwali, P. et al. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat. Commun. 14, 2930 (2023).$$v14$$y2023 000613581 999C5 $$2Crossref$$uRaetzel-Fabian, D. Absolute Chronologie. In Die Kollektivgäber-Nekropole Warburg I-V, Bodenaltertümer Westfalens (ed. Günther, Klaus) 165–178 (Mainz, 1997). 000613581 999C5 $$2Crossref$$uLöwen, H. Menschenreste. In Die Kollektivgäber-Nekropole Warburg I-V, Bodenaltertümer Westfalens (ed. Günther, Klaus) 39−47; 81−91; 112−128; 191−194 (Mainz, 1997). 000613581 999C5 $$1A Immel$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42003-020-01627-4$$p113 -$$tCommun. Biol.$$uImmel, A. et al. Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Commun. Biol. 4, 113 (2021).$$v4$$y2021 000613581 999C5 $$1JH Bonczarowska$$2Crossref$$uBonczarowska, J. H. et al. Ancient Yersinia pestis genomes lack the virulence-associated YpfΦ prophage present in modern pandemic strains. Proc. Biol. Sci. 290, 20230622 (2023).$$y2023 000613581 999C5 $$1A Bergström$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-022-04824-9$$p313 -$$tNature$$uBergström, A. et al. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 607, 313–320 (2022).$$v607$$y2022 000613581 999C5 $$1A Bergström$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aba9572$$p557 -$$tScience$$uBergström, A. et al. Origins and genetic legacy of prehistoric dogs. Science 370, 557–564 (2020).$$v370$$y2020 000613581 999C5 $$1LR Botigué$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms16082$$tNat. Commun.$$uBotigué, L. R. et al. Ancient European dog genomes reveal continuity since the early Neolithic. Nat. Commun. 8, 16082 (2017).$$v8$$y2017 000613581 999C5 $$1LAF Frantz$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaf3161$$p1228 -$$tScience$$uFrantz, L. A. F. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).$$v352$$y2016 000613581 999C5 $$1M Ollivier$$2Crossref$$9-- missing cx lookup --$$a10.1098/rsbl.2018.0286$$p20180286 -$$tBiol. Lett.$$uOllivier, M. et al. Dogs accompanied humans during the Neolithic expansion into Europe. Biol. Lett. 14, 20180286 (2018).$$v14$$y2018 000613581 999C5 $$1A Margaryan$$2Crossref$$9-- missing cx lookup --$$a10.1002/ece3.3924$$p3534 -$$tEcol. Evol.$$uMargaryan, A. et al. Ancient pathogen DNA in human teeth and petrous bones. Ecol. Evol. 8, 3534–3542 (2018).$$v8$$y2018 000613581 999C5 $$1MA Spyrou$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41576-019-0119-1$$p323 -$$tNat. Rev. Genet.$$uSpyrou, M. A., Bos, K. I., Herbig, A. & Krause, J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20, 323–340 (2019).$$v20$$y2019 000613581 999C5 $$1JH Bonczarowska$$2Crossref$$9-- missing cx lookup --$$a10.1186/s13059-022-02806-8$$tGenome Biol.$$uBonczarowska, J. H. et al. Pathogen genomics study of an early medieval community in Germany reveals extensive co-infections. Genome Biol. 23, 250 (2022).$$v23$$y2022 000613581 999C5 $$1M Haller$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.isci.2021.102419$$p102419 -$$tiScience$$uHaller, M. et al. Mass burial genomics reveals outbreak of enteric paratyphoid fever in the late medieval trade city Lübeck. iScience 24, 102419 (2021).$$v24$$y2021 000613581 999C5 $$1AK Trondman$$2Crossref$$9-- missing cx lookup --$$a10.1111/gcb.12737$$p676 -$$tGlob. Change Biol.$$uTrondman, A. K. et al. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Glob. Change Biol. 21, 676–697 (2015).$$v21$$y2015 000613581 999C5 $$1RM Fyfe$$2Crossref$$9-- missing cx lookup --$$a10.1111/gcb.12776$$p1197 -$$tGlob. Change Biol.$$uFyfe, R. M., Woodbridge, J. & Roberts, N. From forest to farmland: pollen‐inferred land cover change across Europe using the pseudobiomization approach. Glob. Change Biol. 21, 1197–1212 (2015).$$v21$$y2015 000613581 999C5 $$1M Zanon$$2Crossref$$9-- missing cx lookup --$$a10.3389/fpls.2018.00253$$p253 -$$tFront. Plant Sci.$$uZanon, M., Davis, B. A. S., Marquer, L., Brewer, S. & Kaplan, J. O. European forest cover during the past 12,000 years: a palynological reconstruction based on modern analogs and remote sensing. Front. Plant Sci. 9, 253 (2018).$$v9$$y2018 000613581 999C5 $$1E Githumbi$$2Crossref$$9-- missing cx lookup --$$a10.5194/essd-14-1581-2022$$p1581 -$$tEarth Syst. Sci. Data$$uGithumbi, E. et al. European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials. Earth Syst. Sci. Data 14, 1581–1619 (2022).$$v14$$y2022 000613581 999C5 $$2Crossref$$uSchmölcke, U. Nutztierhaltung, Jagd und Fischfang. Zur Nahrungsmittelwirtschaft des frühgeschichtlichen Handelsplatzes von Groß Strömkendorf, Landkreis Nordwestmecklenburg. Beiträge zur Ur- und Frühgeschichte Mecklenburg-Vorpommerns 43 (Lübstorf, 2004). 000613581 999C5 $$1P Slavin$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2204044119$$pe2204044119 -$$tProc. Natl Acad. Sci. USA$$uSlavin, P. & Sebbane, F. Emergence and spread of ancestral Yersinia pestis in Late Neolithic and Bronze Age Eurasia, ca. 5,000 to 2,500y B.P. Proc. Natl Acad. Sci. USA 119, e2204044119 (2022).$$v119$$y2022 000613581 999C5 $$1SB Campbell$$2Crossref$$9-- missing cx lookup --$$a10.3201/eid2512.191081$$p2270 -$$tEmerg. Infect. Dis.$$uCampbell, S. B., Nelson, C. A., Hinckley, A. F. & Kugeler, K. J. Animal exposure and human plague, United States, 1970–2017. Emerg. Infect. Dis. 25, 2270–2273 (2019).$$v25$$y2019 000613581 999C5 $$2Crossref$$uSchierhold, K. Studien zur Hessisch-Westfälischen Megalithik: Forschungsstand und -perspektiven im europäischen Kontext. Münstersche Beiträge zur ur- und frühgeschichtlichen Archäologie 6 (Leidorf, 2012). 000613581 999C5 $$1J Ewersen$$2Crossref$$uEwersen, J., Ziegler, S., Ramminger, B. & Schmölcke, U. Stable isotopic ratios from Mesolithic and Neolithic canids as an indicator of human economic and ritual activity. J. Archaeol. Sci. Rep. 17, 346–357 (2018).$$y2018 000613581 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/9783050069456$$uBenecke, N. Archäozoologische Studien zur Entwicklung der Haustierhaltung in Mitteleuropa und Südskandinavien von den Anfängen bis zum ausgehenden Mittelalter (De Gruyter Akademie Forschung, 1994, Reprint 2015 Edn). 000613581 999C5 $$1MC Nichols$$2Crossref$$9-- missing cx lookup --$$a10.2460/javma.244.10.1176$$p1176 -$$tJ. Am. Vet. Med. Assoc.$$uNichols, M. C. et al. Yersinia pestis infection in dogs: 62 cases (2003-2011). J. Am. Vet. Med. Assoc. 244, 1176–1180 (2014).$$v244$$y2014 000613581 999C5 $$1A Cooper$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.289.5482.1139b$$p1139 -$$tScience$$uCooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).$$v289$$y2000 000613581 999C5 $$1N Rohland$$2Crossref$$9-- missing cx lookup --$$a10.1098/rstb.2013.0624$$p20130624 -$$tPhilos. Trans. R. Soc. Lond. B. Biol. Sci.$$uRohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20130624 (2015).$$v370$$y2015 000613581 999C5 $$1B Krause-Kyora$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-03857-x$$tNat. Commun.$$uKrause-Kyora, B. et al. Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nat. Commun. 9, 1569 (2018).$$v9$$y2018 000613581 999C5 $$1A Peltzer$$2Crossref$$9-- missing cx lookup --$$a10.1186/s13059-016-0918-z$$tGenome Biol.$$uPeltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).$$v17$$y2016 000613581 999C5 $$1ÅJ Vågene$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41559-017-0446-6$$p520 -$$tNat. Ecol. Evol.$$uVågene, Å. J. et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018).$$v2$$y2018 000613581 999C5 $$1NA O’Leary$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkv1189$$pD733 -$$tNucleic Acids Res.$$uO’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).$$v44$$y2016 000613581 999C5 $$1DH Huson$$2Crossref$$9-- missing cx lookup --$$a10.1101/gr.5969107$$p377 -$$tGenome Res.$$uHuson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).$$v17$$y2007 000613581 999C5 $$1J Neukamm$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btab190$$p3652 -$$tBioinformatics$$uNeukamm, J., Peltzer, A. & Nieselt, K. DamageProfiler: fast damage pattern calculation for ancient DNA. Bioinformatics 37, 3652–3653 (2021).$$v37$$y2021 000613581 999C5 $$1P Cingolani$$2Crossref$$9-- missing cx lookup --$$a10.4161/fly.19695$$p80 -$$tFly. (Austin)$$uCingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly. (Austin) 6, 80–92 (2012).$$v6$$y2012 000613581 999C5 $$1AR Quinlan$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btq033$$p841 -$$tBioinformatics$$uQuinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).$$v26$$y2010 000613581 999C5 $$2Crossref$$uRStudio Team. RStudio: Integrated Development Environment for R. http://www.rstudio.com (2021). 000613581 999C5 $$1J Susat$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-020-71530-9$$tSci. Rep.$$uSusat, J. et al. Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci. Rep. 10, 14628 (2020).$$v10$$y2020 000613581 999C5 $$1R Bouckaert$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pcbi.1006650$$pe1006650 -$$tPLoS Comput. Biol.$$uBouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).$$v15$$y2019 000613581 999C5 $$1AJ Drummond$$2Crossref$$9-- missing cx lookup --$$a10.1186/1471-2148-7-214$$p214 -$$tBMC Evol. Biol.$$uDrummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).$$v7$$y2007 000613581 999C5 $$1A Rambaut$$2Crossref$$9-- missing cx lookup --$$a10.1093/sysbio/syy032$$p901 -$$tSyst. Biol.$$uRambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).$$v67$$y2018 000613581 999C5 $$1I Mathieson$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature16152$$p499 -$$tNature$$uMathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).$$v528$$y2015 000613581 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2023.04.06.535797$$uMallick, S. et al. The Allen Ancient DNA Resource (AADR): a curated compendium of ancient human genomes. bioRxiv https://doi.org/10.1101/2023.04.06.535797 (2023). 000613581 999C5 $$1N Patterson$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pgen.0020190$$pe190 -$$tPLoS Genet.$$uPatterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).$$v2$$y2006 000613581 999C5 $$1DH Alexander$$2Crossref$$9-- missing cx lookup --$$a10.1101/gr.094052.109$$p1655 -$$tGenome Res.$$uAlexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).$$v19$$y2009 000613581 999C5 $$1N Patterson$$2Crossref$$9-- missing cx lookup --$$a10.1534/genetics.112.145037$$p1065 -$$tGenetics$$uPatterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).$$v192$$y2012 000613581 999C5 $$1JM Monroy Kuhn$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0195491$$pe0195491 -$$tPLoS ONE$$uMonroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).$$v13$$y2018