000613032 001__ 613032
000613032 005__ 20250801212033.0
000613032 0247_ $$2doi$$a10.1007/JHEP05(2024)175
000613032 0247_ $$2INSPIRETeX$$aBertuzzo:2023slg
000613032 0247_ $$2inspire$$ainspire:2727436
000613032 0247_ $$2ISSN$$a1126-6708
000613032 0247_ $$2ISSN$$a1029-8479
000613032 0247_ $$2ISSN$$a1127-2236
000613032 0247_ $$2arXiv$$aarXiv:2311.16253
000613032 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05521
000613032 0247_ $$2altmetric$$aaltmetric:156912998
000613032 0247_ $$2WOS$$aWOS:001227189800001
000613032 0247_ $$2openalex$$aopenalex:W4396964668
000613032 037__ $$aPUBDB-2024-05521
000613032 041__ $$aEnglish
000613032 082__ $$a530
000613032 088__ $$2arXiv$$aarXiv:2311.16253
000613032 088__ $$2CERN$$aCERN-TH-2023-202
000613032 088__ $$2DESY$$aDESY-23-090
000613032 088__ $$2Other$$aHU-EP-23/21
000613032 1001_ $$00000-0003-3844-6422$$aBertuzzo, Enrico$$b0
000613032 245__ $$aALPs, the on-shell way
000613032 260__ $$a[Trieste]$$bSISSA$$c2024
000613032 3367_ $$2DRIVER$$aarticle
000613032 3367_ $$2DataCite$$aOutput Types/Journal article
000613032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754054562_3349147
000613032 3367_ $$2BibTeX$$aARTICLE
000613032 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000613032 3367_ $$00$$2EndNote$$aJournal Article
000613032 500__ $$a32 pages + appendices; v2: minor modifications, matches version published in JHEP
000613032 520__ $$aWe study how the coupling between axion-like particles (ALPs) and matter can be obtained at the level of on-shell scattering amplitudes. We identify three conditions that allow us to compute amplitudes that correspond to shift-symmetric Lagrangians, at the level of operators with dimension 5 or higher, and we discuss how they relate and extend the Adler's zero condition. These conditions are necessary to reduce the number of coefficients consistent with the little-group scaling to the one expected from the Lagrangian approach. We also show how our formalism easily explains that the dimension-5 interaction involving one ALP and two massless spin-1 bosons receive corrections from higher order operators only when the ALP has a non-vanishing mass. As a direct application of our results, we perform a phenomenological study of the inelastic scattering $\ell^+\ell^- \to \phi h$ (with $\ell^\pm$ two charged leptons, $\phi$ the ALP and $h$ the Higgs boson) for which, as a result of the structure of the 3-point and 4-point amplitudes, dimension-7 operators can dominate over the dimension-5 ones well before the energy reaches the cutoff of the theory.
000613032 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000613032 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x1
000613032 536__ $$0G:(EU-Grant)101086085$$aASYMMETRY - Essential Asymmetries of Nature (101086085)$$c101086085$$fHORIZON-MSCA-2021-SE-01$$x2
000613032 536__ $$0G:(EU-Grant)860881$$aHIDDeN - Hunting Invisibles: Dark sectors, Dark matter and Neutrinos (860881)$$c860881$$fH2020-MSCA-ITN-2019$$x3
000613032 542__ $$2Crossref$$i2024-05-15$$uhttps://creativecommons.org/licenses/by/4.0
000613032 542__ $$2Crossref$$i2024-05-15$$uhttps://creativecommons.org/licenses/by/4.0
000613032 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000613032 650_7 $$2INSPIRE$$adimension: 5
000613032 650_7 $$2INSPIRE$$aoperator: higher-order
000613032 650_7 $$2INSPIRE$$ascattering amplitude: on-shell
000613032 650_7 $$2INSPIRE$$alepton
000613032 650_7 $$2INSPIRE$$aaxion: mass
000613032 650_7 $$2INSPIRE$$aaxion-like particles
000613032 650_7 $$2INSPIRE$$ainelastic scattering
000613032 650_7 $$2INSPIRE$$ascaling
000613032 650_7 $$2INSPIRE$$aHiggs particle
000613032 650_7 $$2INSPIRE$$astructure
000613032 650_7 $$2autogen$$aAxions and ALPs
000613032 650_7 $$2autogen$$aNew Light Particles
000613032 650_7 $$2autogen$$aSpecific BSM Phenomenology
000613032 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000613032 7001_ $$0P:(DE-H253)PIP1023796$$aGrojean, Christophe$$b1
000613032 7001_ $$0P:(DE-HGF)0$$aSalla, Gabriel M.$$b2$$eCorresponding author
000613032 77318 $$2Crossref$$3journal-article$$a10.1007/jhep05(2024)175$$bSpringer Science and Business Media LLC$$d2024-05-15$$n5$$p175$$tJournal of High Energy Physics$$v2024$$x1029-8479$$y2024
000613032 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP05(2024)175$$gVol. 05, no. 5, p. 175$$n5$$p175$$tJournal of high energy physics$$v2024$$x1029-8479$$y2024
000613032 7870_ $$0PUBDB-2023-03958$$aBertuzzo, Enrico et.al.$$d2023$$iIsParent$$rDESY-23-090 ; arXiv:2311.16253 ; CERN-TH-2023-202 ; HU-EP-23/21$$tALPs, the on-shell way
000613032 8564_ $$uhttps://bib-pubdb1.desy.de/record/613032/files/JHEP05%282024%29175.pdf$$yOpenAccess
000613032 8564_ $$uhttps://bib-pubdb1.desy.de/record/613032/files/JHEP05%282024%29175.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000613032 909CO $$ooai:bib-pubdb1.desy.de:613032$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$pdnbdelivery$$popenaire
000613032 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023796$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000613032 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000613032 9141_ $$y2024
000613032 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000613032 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000613032 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000613032 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z
000613032 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z
000613032 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000613032 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000613032 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-24
000613032 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z
000613032 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger
000613032 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000613032 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000613032 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000613032 980__ $$ajournal
000613032 980__ $$aVDB
000613032 980__ $$aI:(DE-H253)T-20120731
000613032 980__ $$aUNRESTRICTED
000613032 9801_ $$aFullTexts
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5170/CERN-2014-008.31$$uL.J. Dixon, A brief introduction to modern amplitude methods, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Particle Physics: The Higgs Boson and Beyond, La Pommeraye, France, June 06–19 (2012) [https://doi.org/10.5170/CERN-2014-008.31] [arXiv:1310.5353] [INSPIRE].
000613032 999C5 $$2Crossref$$uH. Elvang and Y.-T. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
000613032 999C5 $$1N Arkani-Hamed$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)070$$p070 -$$tJHEP$$uN. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, Scattering amplitudes for all masses and spins, JHEP 11 (2021) 070 [arXiv:1709.04891] [INSPIRE].$$v11$$y2021
000613032 999C5 $$1G Travaglini$$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8121/ac8380$$p443001 -$$tJ. Phys. A$$uG. Travaglini et al., The SAGEX review on scattering amplitudes, J. Phys. A 55 (2022) 443001 [arXiv:2203.13011] [INSPIRE].$$v55$$y2022
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-54022-6$$uJ.M. Henn and J.C. Plefka, Scattering Amplitudes in Gauge Theories, Springer, Berlin (2014) [https://doi.org/10.1007/978-3-642-54022-6] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9781139644167$$uS. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (2005) [https://doi.org/10.1017/CBO9781139644167] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(94)00488-Z$$uZ. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
000613032 999C5 $$1S Abreu$$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8121/ac87de$$p443004 -$$tJ. Phys. A$$uS. Abreu, R. Britto and C. Duhr, The SAGEX review on scattering amplitudes Chapter 3: Mathematical structures in Feynman integrals, J. Phys. A 55 (2022) 443004 [arXiv:2203.13014] [INSPIRE].$$v55$$y2022
000613032 999C5 $$1J Blümlein$$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8121/ac8086$$p443005 -$$tJ. Phys. A$$uJ. Blümlein and C. Schneider, The SAGEX review on scattering amplitudes Chapter 4: Multi-loop Feynman integrals, J. Phys. A 55 (2022) 443005 [arXiv:2203.13015] [INSPIRE].$$v55$$y2022
000613032 999C5 $$1P Baratella$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2020.115155$$p115155 -$$tNucl. Phys. B$$uP. Baratella, C. Fernandez and A. Pomarol, Renormalization of Higher-Dimensional Operators from On-shell Amplitudes, Nucl. Phys. B 959 (2020) 115155 [arXiv:2005.07129] [INSPIRE].$$v959$$y2020
000613032 999C5 $$1J Elias Miró$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2020)163$$p163 -$$tJHEP$$uJ. Elias Miró, J. Ingoldby and M. Riembau, EFT anomalous dimensions from the S-matrix, JHEP 09 (2020) 163 [arXiv:2005.06983] [INSPIRE].$$v09$$y2020
000613032 999C5 $$1M Jiang$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2021)101$$p101 -$$tJHEP$$uM. Jiang, T. Ma and J. Shu, Renormalization Group Evolution from On-shell SMEFT, JHEP 01 (2021) 101 [arXiv:2005.10261] [INSPIRE].$$v01$$y2021
000613032 999C5 $$1P Baratella$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2021)287$$p287 -$$tJHEP$$uP. Baratella, C. Fernandez, B. von Harling and A. Pomarol, Anomalous Dimensions of Effective Theories from Partial Waves, JHEP 03 (2021) 287 [arXiv:2010.13809] [INSPIRE].$$v03$$y2021
000613032 999C5 $$1C Cheung$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.221602$$p221602 -$$tPhys. Rev. Lett.$$uC. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].$$v114$$y2015
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.041601$$uC. Cheung et al., On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].
000613032 999C5 $$1N Christensen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2023.116278$$p116278 -$$tNucl. Phys. B$$uN. Christensen et al., Challenges with internal photons in constructive QED, Nucl. Phys. B 993 (2023) 116278 [arXiv:2209.15018] [INSPIRE].$$v993$$y2023
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.016014$$uN. Christensen and B. Field, Constructive standard model, Phys. Rev. D 98 (2018) 016014 [arXiv:1802.00448] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.065019$$uN. Christensen, B. Field, A. Moore and S. Pinto, Two-, three-, and four-body decays in the constructive standard model, Phys. Rev. D 101 (2020) 065019 [arXiv:1909.09164] [INSPIRE].
000613032 999C5 $$1R Aoude$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2019)058$$p058 -$$tJHEP$$uR. Aoude and C.S. Machado, The Rise of SMEFT On-shell Amplitudes, JHEP 12 (2019) 058 [arXiv:1905.11433] [INSPIRE].$$v12$$y2019
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.095021$$uG. Durieux and C.S. Machado, Enumerating higher-dimensional operators with on-shell amplitudes, Phys. Rev. D 101 (2020) 095021 [arXiv:1912.08827] [INSPIRE].
000613032 999C5 $$1N Arkani-Hamed$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2021)259$$p259 -$$tJHEP$$uN. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, The EFT-Hedron, JHEP 05 (2021) 259 [arXiv:2012.15849] [INSPIRE].$$v05$$y2021
000613032 999C5 $$1R Balkin$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2022)129$$p129 -$$tJHEP$$uR. Balkin et al., On-shell Higgsing for EFTs, JHEP 03 (2022) 129 [arXiv:2112.09688] [INSPIRE].$$v03$$y2022
000613032 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2022)042$$p042 -$$tJHEP$$uQ. Bonnefoy et al., The seeds of EFT double copy, JHEP 05 (2022) 042 [arXiv:2112.11453] [INSPIRE].$$v05$$y2022
000613032 999C5 $$1G Durieux$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2020)119$$p119 -$$tJHEP$$uG. Durieux, T. Kitahara, Y. Shadmi and Y. Weiss, The electroweak effective field theory from on-shell amplitudes, JHEP 01 (2020) 119 [arXiv:1909.10551] [INSPIRE].$$v01$$y2020
000613032 999C5 $$1CS Machado$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2023)226$$p226 -$$tJHEP$$uC.S. Machado, S. Renner and D. Sutherland, Building blocks of the flavourful SMEFT RG, JHEP 03 (2023) 226 [arXiv:2210.09316] [INSPIRE].$$v03$$y2023
000613032 999C5 $$1M Accettulli Huber$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)221$$p221 -$$tJHEP$$uM. Accettulli Huber and S. De Angelis, Standard Model EFTs via on-shell methods, JHEP 11 (2021) 221 [arXiv:2108.03669] [INSPIRE].$$v11$$y2021
000613032 999C5 $$1S De Angelis$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)299$$p299 -$$tJHEP$$uS. De Angelis, Amplitude bases in generic EFTs, JHEP 08 (2022) 299 [arXiv:2202.02681] [INSPIRE].$$v08$$y2022
000613032 999C5 $$1H Liu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2023)241$$p241 -$$tJHEP$$uH. Liu, T. Ma, Y. Shadmi and M. Waterbury, An EFT hunter’s guide to two-to-two scattering: HEFT and SMEFT on-shell amplitudes, JHEP 05 (2023) 241 [arXiv:2301.11349] [INSPIRE].$$v05$$y2023
000613032 999C5 $$1Y Shadmi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2019)165$$p165 -$$tJHEP$$uY. Shadmi and Y. Weiss, Effective Field Theory Amplitudes the On-Shell Way: Scalar and Vector Couplings to Gluons, JHEP 02 (2019) 165 [arXiv:1809.09644] [INSPIRE].$$v02$$y2019
000613032 999C5 $$2Crossref$$uZ.-Y. Dong, T. Ma and J. Shu, Constructing on-shell operator basis for all masses and spins, arXiv:2103.15837 [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1137/aca200$$uT. Ma, J. Shu and M.-L. Xiao, Standard model effective field theory from on-shell amplitudes, Chin. Phys. C 47 (2023) 023105 [arXiv:1902.06752] [INSPIRE].
000613032 999C5 $$1G Durieux$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2020)175$$p175 -$$tJHEP$$uG. Durieux et al., Constructing massive on-shell contact terms, JHEP 12 (2020) 175 [arXiv:2008.09652] [INSPIRE].$$v12$$y2020
000613032 999C5 $$2Crossref$$uS. De Angelis and G. Durieux, EFT matching from analyticity and unitarity, arXiv:2308.00035 [INSPIRE].
000613032 999C5 $$1A Falkowski$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.10.5.101$$p101 -$$tSciPost Phys.$$uA. Falkowski, G. Isabella and C.S. Machado, On-shell effective theory for higher-spin dark matter, SciPost Phys. 10 (2021) 101 [arXiv:2011.05339] [INSPIRE].$$v10$$y2021
000613032 999C5 $$1GM Salla$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-023-11371-8$$p204 -$$tEur. Phys. J. C$$uG.M. Salla, Characterising dark matter-induced neutrino potentials, Eur. Phys. J. C 83 (2023) 204 [arXiv:2209.00442] [INSPIRE].$$v83$$y2023
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.036028$$uG.F.S. Alves, E. Bertuzzo and G.M. Salla, On-shell approach to neutrino oscillations, Phys. Rev. D 106 (2022) 036028 [arXiv:2103.16362] [INSPIRE].
000613032 999C5 $$1C Cheung$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.261602$$p261602 -$$tPhys. Rev. Lett.$$uC. Cheung et al., Vector Effective Field Theories from Soft Limits, Phys. Rev. Lett. 120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].$$v120$$y2018
000613032 999C5 $$1L Dai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.116011$$p116011 -$$tPhys. Rev. D$$uL. Dai, I. Low, T. Mehen and A. Mohapatra, Operator Counting and Soft Blocks in Chiral Perturbation Theory, Phys. Rev. D 102 (2020) 116011 [arXiv:2009.01819] [INSPIRE].$$v102$$y2020
000613032 999C5 $$1N Arkani-Hamed$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2010)016$$p016 -$$tJHEP$$uN. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].$$v09$$y2010
000613032 999C5 $$1C Cheung$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2017)020$$p020 -$$tJHEP$$uC. Cheung et al., A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].$$v02$$y2017
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/06/045$$uG.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X93001946$$uF. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
000613032 999C5 $$1SL Adler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.137.B1022$$pB1022 -$$tPhys. Rev.$$uS.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].$$v137$$y1965
000613032 999C5 $$2Crossref$$uS. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013).
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.061601$$uI. Low and Z. Yin, Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models, Phys. Rev. Lett. 120 (2018) 061601 [arXiv:1709.08639] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.045032$$uI. Low, Double Soft Theorems and Shift Symmetry in Nonlinear Sigma Models, Phys. Rev. D 93 (2016) 045032 [arXiv:1512.01232] [INSPIRE].
000613032 999C5 $$1K Kampf$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.111601$$p111601 -$$tPhys. Rev. Lett.$$uK. Kampf, J. Novotny, M. Shifman and J. Trnka, New Soft Theorems for Goldstone Boson Amplitudes, Phys. Rev. Lett. 124 (2020) 111601 [arXiv:1910.04766] [INSPIRE].$$v124$$y2020
000613032 999C5 $$1I Low$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2018)078$$p078 -$$tJHEP$$uI. Low and Z. Yin, The Infrared Structure of Nambu-Goldstone Bosons, JHEP 10 (2018) 078 [arXiv:1804.08629] [INSPIRE].$$v10$$y2018
000613032 999C5 $$1I Low$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2019)078$$p078 -$$tJHEP$$uI. Low and Z. Yin, Soft Bootstrap and Effective Field Theories, JHEP 11 (2019) 078 [arXiv:1904.12859] [INSPIRE].$$v11$$y2019
000613032 999C5 $$1Y-J Du$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2015)058$$p058 -$$tJHEP$$uY.-J. Du and H. Luo, On single and double soft behaviors in NLSM, JHEP 08 (2015) 058 [arXiv:1505.04411] [INSPIRE].$$v08$$y2015
000613032 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.111803$$p111803 -$$tPhys. Rev. Lett.$$uQ. Bonnefoy, C. Grojean and J. Kley, Shift-Invariant Orders of an Axionlike Particle, Phys. Rev. Lett. 130 (2023) 111803 [arXiv:2206.04182] [INSPIRE].$$v130$$y2023
000613032 999C5 $$1R Britto$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2005.02.030$$p499 -$$tNucl. Phys. B$$uR. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].$$v715$$y2005
000613032 999C5 $$1R Britto$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.181602$$p181602 -$$tPhys. Rev. Lett.$$uR. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].$$v94$$y2005
000613032 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-08968-2$$p181 -$$tEur. Phys. J. C$$uM. Chala, G. Guedes, M. Ramos and J. Santiago, Running in the ALPs, Eur. Phys. J. C 81 (2021) 181 [arXiv:2012.09017] [INSPIRE].$$v81$$y2021
000613032 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2021)063$$p063 -$$tJHEP$$uM. Bauer et al., The Low-Energy Effective Theory of Axions and ALPs, JHEP 04 (2021) 063 [arXiv:2012.12272] [INSPIRE].$$v04$$y2021
000613032 999C5 $$1S Das Bakshi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2023)133$$p133 -$$tJHEP$$uS. Das Bakshi, J. Machado-Rodríguez and M. Ramos, Running beyond ALPs: shift-breaking and CP-violating effects, JHEP 11 (2023) 133 [arXiv:2306.08036] [INSPIRE].$$v11$$y2023
000613032 999C5 $$2Crossref$$uP. Benincasa and F. Cachazo, Consistency Conditions on the S-Matrix of Massless Particles, arXiv:0705.4305 [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.025007$$uP. Benincasa and E. Conde, Exploring the S-Matrix of Massless Particles, Phys. Rev. D 86 (2012) 025007 [arXiv:1108.3078] [INSPIRE].
000613032 999C5 $$1P Benincasa$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2011)074$$p074 -$$tJHEP$$uP. Benincasa and E. Conde, On the Tree-Level Structure of Scattering Amplitudes of Massless Particles, JHEP 11 (2011) 074 [arXiv:1106.0166] [INSPIRE].$$v11$$y2011
000613032 999C5 $$1B Bachu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2020)039$$p039 -$$tJHEP$$uB. Bachu and A. Yelleshpur, On-Shell Electroweak Sector and the Higgs Mechanism, JHEP 08 (2020) 039 [arXiv:1912.04334] [INSPIRE].$$v08$$y2020
000613032 999C5 $$1B Bachu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2024)098$$p098 -$$tJHEP$$uB. Bachu, Spontaneous symmetry breaking from an on-shell perspective, JHEP 02 (2024) 098 [arXiv:2305.02502] [INSPIRE].$$v02$$y2024
000613032 999C5 $$1JR Ellis$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(76)90184-X$$p292 -$$tNucl. Phys. B$$uJ.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].$$v106$$y1976
000613032 999C5 $$1MA Shifman$$2Crossref$$uM.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].$$y1979
000613032 999C5 $$1AI Vainshtein$$2Crossref$$9-- missing cx lookup --$$a10.1070/PU1980v023n08ABEH005019$$p429 -$$tSov. Phys. Usp.$$uA.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Higgs Particles, Sov. Phys. Usp. 23 (1980) 429 [INSPIRE].$$v23$$y1980
000613032 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2017)044$$p044 -$$tJHEP$$uM. Bauer, M. Neubert and A. Thamm, Collider Probes of Axion-Like Particles, JHEP 12 (2017) 044 [arXiv:1708.00443] [INSPIRE].$$v12$$y2017
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.035027$$uI. Brivio, O.J.P. Éboli and M.C. Gonzalez-Garcia, Unitarity constraints on ALP interactions, Phys. Rev. D 104 (2021) 035027 [arXiv:2106.05977] [INSPIRE].
000613032 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-6587-9$$p74 -$$tEur. Phys. J. C$$uM. Bauer, M. Heiles, M. Neubert and A. Thamm, Axion-Like Particles at Future Colliders, Eur. Phys. J. C 79 (2019) 74 [arXiv:1808.10323] [INSPIRE].$$v79$$y2019
000613032 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.181801$$p181801 -$$tPhys. Rev. Lett.$$uM. Bauer, M. Neubert and A. Thamm, Analyzing the CP Nature of a New Scalar Particle via S → Zh Decay, Phys. Rev. Lett. 117 (2016) 181801 [arXiv:1610.00009] [INSPIRE].$$v117$$y2016
000613032 999C5 $$2Crossref$$uM. Bauer, M. Neubert and A. Thamm, The “forgotten” decay S → Z + h as a CP analyzer, arXiv:1607.01016 [INSPIRE].
000613032 999C5 $$1H Song$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2024)161$$p161 -$$tJHEP$$uH. Song, H. Sun and J.-H. Yu, Effective field theories of axion, ALP and dark photon, JHEP 01 (2024) 161 [arXiv:2305.16770] [INSPIRE].$$v01$$y2024
000613032 999C5 $$2Crossref$$uH. Song, H. Sun and J.-H. Yu, Complete EFT Operator Bases for Dark Matter and Weakly-Interacting Light Particle, arXiv:2306.05999 [INSPIRE].
000613032 999C5 $$1C Grojean$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2023)196$$p196 -$$tJHEP$$uC. Grojean, J. Kley and C.-Y. Yao, Hilbert series for ALP EFTs, JHEP 11 (2023) 196 [arXiv:2307.08563] [INSPIRE].$$v11$$y2023
000613032 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2022)138$$p138 -$$tJHEP$$uM. Chala, Á. Díaz-Carmona and G. Guedes, A Green’s basis for the bosonic SMEFT to dimension 8, JHEP 05 (2022) 138 [arXiv:2112.12724] [INSPIRE].$$v05$$y2022
000613032 999C5 $$1H-L Li$$2Crossref$$uH.-L. Li et al., Operators for generic effective field theory at any dimension: on-shell amplitude basis construction, JHEP 04 (2022) 140 [arXiv:2201.04639] [INSPIRE].$$y2022
000613032 999C5 $$1K Fraser$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2020)066$$p066 -$$tJHEP$$uK. Fraser and M. Reece, Axion Periodicity and Coupling Quantization in the Presence of Mixing, JHEP 05 (2020) 066 [arXiv:1910.11349] [INSPIRE].$$v05$$y2020
000613032 999C5 $$1P Agrawal$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2018)006$$p006 -$$tJHEP$$uP. Agrawal, J.J. Fan, M. Reece and L.-T. Wang, Experimental Targets for Photon Couplings of the QCD Axion, JHEP 02 (2018) 006 [arXiv:1709.06085] [INSPIRE].$$v02$$y2018
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.439.0008$$uM. Reece, TASI Lectures: (No) Global Symmetries to Axion Physics, PoS TASI2022 (2024) 008 [arXiv:2304.08512] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2014.04.012$$uA. Alloul et al., FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(01)00290-9$$uT. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2016.06.008$$uV. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2020.107478$$uV. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].
000613032 999C5 $$1C Csaki$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2021)029$$p029 -$$tJHEP$$uC. Csaki et al., Scattering amplitudes for monopoles: pairwise little group and pairwise helicity, JHEP 08 (2021) 029 [arXiv:2009.14213] [INSPIRE].$$v08$$y2021
000613032 999C5 $$2Crossref$$uA.V. Sokolov and A. Ringwald, Electromagnetic Couplings of Axions, arXiv:2205.02605 [INSPIRE].
000613032 999C5 $$1AV Sokolov$$2Crossref$$9-- missing cx lookup --$$a10.1002/andp.202300112$$p2300112 -$$tAnnalen Phys.$$uA.V. Sokolov and A. Ringwald, Generic Axion Maxwell Equations: Path Integral Approach, Annalen Phys. 536 (2023) 2300112 [arXiv:2303.10170] [INSPIRE].$$v536$$y2023
000613032 999C5 $$1JF Gunion$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)90774-9$$p333 -$$tPhys. Lett. B$$uJ.F. Gunion and Z. Kunszt, Improved Analytic Techniques for Tree Graph Calculations and the G g q anti-q Lepton anti-Lepton Subprocess, Phys. Lett. B 161 (1985) 333 [INSPIRE].$$v161$$y1985
000613032 999C5 $$2Crossref$$uL.J. Dixon, Calculating scattering amplitudes efficiently, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95), Boulder, U.S.A., June 04–30 (1995) [hep-ph/9601359] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/45/11/115401$$uB.I. Zwiebel, From Scattering Amplitudes to the Dilatation Generator in $$ \mathcal{N} $$ = 4 SYM, J. Phys. A 45 (2012) 115401 [arXiv:1111.0083] [INSPIRE].
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2015)149$$uM. Wilhelm, Amplitudes, Form Factors and the Dilatation Operator in $$ \mathcal{N} $$ = 4 SYM Theory, JHEP 02 (2015) 149 [arXiv:1410.6309] [INSPIRE].
000613032 999C5 $$1S Caron-Huot$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2016)010$$p010 -$$tJHEP$$uS. Caron-Huot and M. Wilhelm, Renormalization group coefficients and the S-matrix, JHEP 12 (2016) 010 [arXiv:1607.06448] [INSPIRE].$$v12$$y2016
000613032 999C5 $$1D Forde$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.75.125019$$p125019 -$$tPhys. Rev. D$$uD. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].$$v75$$y2007
000613032 999C5 $$1P Mastrolia$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2009.06.033$$p246 -$$tPhys. Lett. B$$uP. Mastrolia, Double-Cut of Scattering Amplitudes and Stokes’ Theorem, Phys. Lett. B 678 (2009) 246 [arXiv:0905.2909] [INSPIRE].$$v678$$y2009
000613032 999C5 $$1WT Giele$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/04/049$$p049 -$$tJHEP$$uW.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].$$v04$$y2008
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/08/012$$uZ. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].
000613032 999C5 $$1R Britto$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2005.07.014$$p275 -$$tNucl. Phys. B$$uR. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].$$v725$$y2005
000613032 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(94)90179-1$$uZ. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
000613032 999C5 $$1G Passarino$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90234-7$$p151 -$$tNucl. Phys. B$$uG. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into μ+μ− in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].$$v160$$y1979