001     613031
005     20250723172305.0
024 7 _ |a 10.1364/OL.539646
|2 doi
024 7 _ |a 0146-9592
|2 ISSN
024 7 _ |a 1071-2763
|2 ISSN
024 7 _ |a 1071-8842
|2 ISSN
024 7 _ |a 1539-4794
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-05520
|2 datacite_doi
024 7 _ |a 39602764
|2 pmid
024 7 _ |a WOS:001379161600006
|2 WOS
024 7 _ |a openalex:W4404111780
|2 openalex
037 _ _ |a PUBDB-2024-05520
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Escoto, Esmerando
|0 P:(DE-H253)PIP1093087
|b 0
|e Corresponding author
|u desy
245 _ _ |a Improved temporal characteristics for post-compressed pulses via application-tailored nonlinear polarization ellipse rotation
260 _ _ |a Washington, DC
|c 2024
|b Optica Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734001674_3738757
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Intense ultrashort laser pulses with high temporal quality are essential for fundamental science. Nonlinear polarization ellipse rotation (NER) is one way to ensure this high temporal quality, by suppressing weaker signals beyond the duration of the main pulse up to a few orders of magnitude.Post-compression schemes have revolutionized ultrafast lasers, enabling the generation of pulses with durations beyond the limit supported by laser gain media.However, high compression ratios lead to the formation of new pre- and post-pulses. Both NER and post-compression depend on the optical Kerr effect. This makes the combination of the two in a single setup both advantageous and straightforward.While NER cannot suppress the new pre- and post-pulses generated in post-compression, we show via simulations and experimental data that by combining the two, it is possible to shape the output spectrum and counteract temporal contrast degradation.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 1
536 _ _ |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)
|0 G:(DE-HGF)2020_InternLabs-0011
|c 2020_InternLabs-0011
|x 2
536 _ _ |a BMBF-13N16678 - Milliwatt-level efficient gas harmonic EUV source (MEGA-EUV) Multi-pass cell development for post-compression and spectral tuning (BMBF-13N16678)
|0 G:(DE-H253)BMBF-13N16678
|c BMBF-13N16678
|x 3
542 _ _ |i 2024-11-26
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
542 _ _ |i 2024-11-26
|2 Crossref
|u https://opg.optica.org/policies/opg-tdm-policy.json
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a FLASH
|f FLASH Beamline PG2
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)F-PG2-20150101
|6 EXP:(DE-H253)F-PG2-20150101
|x 0
693 _ _ |a FLASH
|f FLASH Beamline PG1
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)F-PG1-20150101
|6 EXP:(DE-H253)F-PG1-20150101
|x 1
693 _ _ |a FLASH II
|e FLASH 2020+ Project
|1 EXP:(DE-H253)FLASHII-20150901
|0 EXP:(DE-H253)FLASH2020p-20221201
|5 EXP:(DE-H253)FLASH2020p-20221201
|x 2
700 1 _ |a Pressacco, Federico
|0 P:(DE-H253)PIP1027495
|b 1
700 1 _ |a Jiang, Yujiao
|0 P:(DE-H253)PIP1094910
|b 2
700 1 _ |a Rajhans, Supriya
|0 P:(DE-H253)PIP1094525
|b 3
700 1 _ |a Khodakovskiy, Nikita
|0 P:(DE-H253)PIP1098743
|b 4
700 1 _ |a Hartl, Ingmar
|0 P:(DE-H253)PIP1018794
|b 5
700 1 _ |a Seidel, Marcus
|0 P:(DE-H253)PIP1090906
|b 6
700 1 _ |a Heyl, Christoph
|0 P:(DE-H253)PIP1082227
|b 7
700 1 _ |a Tuennermann, Henrik
|0 P:(DE-H253)PIP1088102
|b 8
773 1 8 |a 10.1364/ol.539646
|b Optica Publishing Group
|d 2024-11-26
|n 23
|p 6841
|3 journal-article
|2 Crossref
|t Optics Letters
|v 49
|y 2024
|x 0146-9592
773 _ _ |a 10.1364/OL.539646
|g Vol. 49, no. 23, p. 6841 -
|0 PERI:(DE-600)1479014-2
|n 23
|p 6841
|t Optics letters
|v 49
|y 2024
|x 0146-9592
856 4 _ |u https://bib-pubdb1.desy.de/record/613031/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/613031/files/Institution%20Portal.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/613031/files/NER%20-%20OL%2008-2024%20-%20DESY%20Internal%20Review.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/613031/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/613031/files/Institution%20Portal.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/613031/files/NER%20-%20OL%2008-2024%20-%20DESY%20Internal%20Review.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/613031/files/Publisher%27s%20PDF.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/613031/files/Publisher%27s%20PDF.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:613031
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1093087
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1027495
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1027495
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1094910
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 2
|6 P:(DE-H253)PIP1094910
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1094525
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1098743
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1018794
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1090906
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1082227
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1088102
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: Optica 01/01/2023
|0 PC:(DE-HGF)0123
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT LETT : 2022
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
920 1 _ |0 I:(DE-H253)FS-PRI-20240109
|k FS-PRI
|l Photonics Research and Development
|x 0
920 1 _ |0 I:(DE-H253)FS-LA-20130416
|k FS-LA
|l Laser Forschung und Entwicklung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PRI-20240109
980 _ _ |a I:(DE-H253)FS-LA-20130416
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1007/s00340-006-2143-z
|9 -- missing cx lookup --
|1 Cotel
|p 7 -
|2 Crossref
|t Appl. Phys. B
|v 83
|y 2006
999 C 5 |a 10.1364/OL.16.000490
|9 -- missing cx lookup --
|1 Kapteyn
|p 490 -
|2 Crossref
|t Opt. Lett.
|v 16
|y 1991
999 C 5 |a 10.1364/OL.32.000310
|9 -- missing cx lookup --
|1 Lévy
|p 310 -
|2 Crossref
|t Opt. Lett.
|v 32
|y 2007
999 C 5 |a 10.1364/OL.37.003363
|9 -- missing cx lookup --
|1 Kiriyama
|p 3363 -
|2 Crossref
|t Opt. Lett.
|v 37
|y 2012
999 C 5 |a 10.1364/OL.30.000920
|9 -- missing cx lookup --
|1 Jullien
|p 920 -
|2 Crossref
|t Opt. Lett.
|v 30
|y 2005
999 C 5 |a 10.1063/1.325110
|9 -- missing cx lookup --
|1 Sala
|p 2268 -
|2 Crossref
|t J. Appl. Phys.
|v 49
|y 1978
999 C 5 |a 10.1364/OL.44.004028
|9 -- missing cx lookup --
|1 Smijesh
|p 4028 -
|2 Crossref
|t Opt. Lett.
|v 44
|y 2019
999 C 5 |a 10.1002/lpor.202100220
|9 -- missing cx lookup --
|1 Hanna
|p 2100220 -
|2 Crossref
|t Laser Photonics Rev.
|v 15
|y 2021
999 C 5 |a 10.1364/OPTICA.449225
|9 -- missing cx lookup --
|1 Viotti
|p 197 -
|2 Crossref
|t Optica
|v 9
|y 2022
999 C 5 |a 10.1088/1612-202X/abff49
|9 -- missing cx lookup --
|1 Pajer
|p 065401 -
|2 Crossref
|t Laser Phys. Lett.
|v 18
|y 2021
999 C 5 |a 10.1088/2515-7647/ad078a
|9 -- missing cx lookup --
|1 Kaur
|p 015001 -
|2 Crossref
|t J. Phys. Photonics
|v 6
|y 2024
999 C 5 |a 10.1017/hpl.2022.22
|9 -- missing cx lookup --
|1 Song
|p e28 -
|2 Crossref
|t High Power Laser Sci. Eng.
|v 10
|y 2022
999 C 5 |a 10.1364/OE.455393
|9 -- missing cx lookup --
|1 Pfaff
|p 10981 -
|2 Crossref
|t Opt. Express
|v 30
|y 2022
999 C 5 |a 10.1002/lpor.202100268
|9 -- missing cx lookup --
|1 Seidel
|p 2100268 -
|2 Crossref
|t Laser Photonics Rev.
|v 16
|y 2022
999 C 5 |a 10.1364/OL.27.001646
|9 -- missing cx lookup --
|1 Homoelle
|p 1646 -
|2 Crossref
|t Opt. Lett.
|v 27
|y 2002
999 C 5 |a 10.1088/1612-202X/ab3852
|9 -- missing cx lookup --
|1 Khodakovskiy
|p 095001 -
|2 Crossref
|t Laser Phys. Lett.
|v 16
|y 2019
999 C 5 |a 10.1364/JOSAB.453901
|9 -- missing cx lookup --
|1 Escoto
|p 1694 -
|2 Crossref
|t J. Opt. Soc. Am. B
|v 39
|y 2022
999 C 5 |a 10.1364/JOSAB.479037
|9 -- missing cx lookup --
|1 Benner
|p 301 -
|2 Crossref
|t J. Opt. Soc. Am. B
|v 40
|y 2023
999 C 5 |a 10.1364/OE.481054
|9 -- missing cx lookup --
|1 Staels
|p 18898 -
|2 Crossref
|t Opt. Express
|v 31
|y 2023
999 C 5 |1 Boyd
|y 2020
|2 Crossref
|o Boyd 2020
999 C 5 |a 10.1103/PhysRevLett.12.507
|9 -- missing cx lookup --
|1 Maker
|p 507 -
|2 Crossref
|t Phys. Rev. Lett.
|v 12
|y 1964
999 C 5 |a 10.1364/JOSAB.386049
|9 -- missing cx lookup --
|1 Daher
|p 993 -
|2 Crossref
|t J. Opt. Soc. Am. B
|v 37
|y 2020
999 C 5 |a 10.1038/s41566-022-01121-9
|9 -- missing cx lookup --
|1 Balla
|p 187 -
|2 Crossref
|t Nat. Photonics
|v 17
|y 2023


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21