Home > Publications database > A Pathway Toward Sub-10 nm Surface Nanostructures Utilizing Block Copolymer Crystallization Control > print |
001 | 612827 | ||
005 | 20250715151518.0 | ||
024 | 7 | _ | |a 10.1002/admi.202400661 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-05481 |2 datacite_doi |
024 | 7 | _ | |a WOS:001419065800001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4407370817 |
037 | _ | _ | |a PUBDB-2024-05481 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Meinhardt, Alexander |0 P:(DE-H253)PIP1088322 |b 0 |e Corresponding author |
245 | _ | _ | |a A Pathway Toward Sub-10 nm Surface Nanostructures Utilizing Block Copolymer Crystallization Control |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1743160490_731526 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a It is elucidated how crystallization can be used to create lateral surface nanostructures in a size regime toward sub-10 nm using molecular self-assembly of short chain crystallizable block copolymers (BCP) and assist in overcoming the high-χ barrier for microphase separation. In this work, an amphiphilic double-crystalline polyethylene-b-polyethylene oxide (PE-b-PEO) block co-oligomer is used. A crystallization mechanism of the short-chain BCP in combination with neutral wetting of the functionalized substrate surface that permits to form edge-on, extended chain crystal lamellae with enhanced thermodynamic stability. In situ atomic force microscopy (AFM) analysis along with surface energy considerations suggest that upon cooling from the polymer melt, the PE-b-PEO first forms a segregated horizontal lamellar morphology. AFM analysis indicates that the PEO crystallization triggers a morphological transition involving a rotation of the forming extended chain crystals in edge-on orientation. Exposing their crystal side facets to the top surface permits to minimize their interfacial energy and form vertical nanostructures. Moreover, the edge-on lamellae can be macroscopically aligned by directed self-assembly (DSA), one necessity for various nanotechnological applications. It is believed that the observed mechanism to form stable edge-on lamellae can be transferred to other crystallizable short chain BCPs, providing potential pathways for sub-10 nm nanotechnology. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417) |0 G:(EU-Grant)101007417 |c 101007417 |f H2020-INFRAIA-2020-1 |x 1 |
536 | _ | _ | |a HIRS-0018 - Helmholtz-Lund International School - Intelligent instrumentation for exploring matter at different time and length scales (HELIOS) (2020_HIRS-0018) |0 G:(DE-HGF)2020_HIRS-0018 |c 2020_HIRS-0018 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a Nanolab |e DESY NanoLab: Microscopy |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-04-20150101 |5 EXP:(DE-H253)Nanolab-04-20150101 |x 0 |
700 | 1 | _ | |a Qi, Peng |0 P:(DE-H253)PIP1098272 |b 1 |
700 | 1 | _ | |a Maximov, Ivan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Keller, Thomas F. |0 P:(DE-H253)PIP1019138 |b 3 |e Corresponding author |u desy |
773 | _ | _ | |a 10.1002/admi.202400661 |g p. 2400661 |0 PERI:(DE-600)2750376-8 |n 6 |p 2400661 |t Advanced materials interfaces |v 12 |y 2025 |x 2196-7350 |
856 | 4 | _ | |u https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202400661 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/Adv%20Materials%20Inter%20-%202025%20-%20Meinhardt%20-%20A%20Pathway%20Toward%20Sub%E2%80%9010%20nm%20Surface%20Nanostructures%20Utilizing%20Block%20Copolymer.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/Published_Supplement_AMeinhardt_AdvMatInter_2025.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/Adv%20Materials%20Inter%20-%202025%20-%20Meinhardt%20-%20A%20Pathway%20Toward%20Sub%E2%80%9010%20nm%20Surface%20Nanostructures%20Utilizing%20Block%20Copolymer.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612827/files/Published_Supplement_AMeinhardt_AdvMatInter_2025.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:612827 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1088322 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1098272 |
910 | 1 | _ | |a NanoLund and Solid State Physics, Lund University |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1019138 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 3 |6 P:(DE-H253)PIP1019138 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-11 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER INTERFACES : 2022 |d 2023-08-29 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ADV MATER INTERFACES : 2022 |d 2023-08-29 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-08-08T17:03:47Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-08-08T17:03:47Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-11 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-08-08T17:03:47Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|