001     612827
005     20250715151518.0
024 7 _ |a 10.1002/admi.202400661
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05481
|2 datacite_doi
024 7 _ |a WOS:001419065800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4407370817
037 _ _ |a PUBDB-2024-05481
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Meinhardt, Alexander
|0 P:(DE-H253)PIP1088322
|b 0
|e Corresponding author
245 _ _ |a A Pathway Toward Sub-10 nm Surface Nanostructures Utilizing Block Copolymer Crystallization Control
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1743160490_731526
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is elucidated how crystallization can be used to create lateral surface nanostructures in a size regime toward sub-10 nm using molecular self-assembly of short chain crystallizable block copolymers (BCP) and assist in overcoming the high-χ barrier for microphase separation. In this work, an amphiphilic double-crystalline polyethylene-b-polyethylene oxide (PE-b-PEO) block co-oligomer is used. A crystallization mechanism of the short-chain BCP in combination with neutral wetting of the functionalized substrate surface that permits to form edge-on, extended chain crystal lamellae with enhanced thermodynamic stability. In situ atomic force microscopy (AFM) analysis along with surface energy considerations suggest that upon cooling from the polymer melt, the PE-b-PEO first forms a segregated horizontal lamellar morphology. AFM analysis indicates that the PEO crystallization triggers a morphological transition involving a rotation of the forming extended chain crystals in edge-on orientation. Exposing their crystal side facets to the top surface permits to minimize their interfacial energy and form vertical nanostructures. Moreover, the edge-on lamellae can be macroscopically aligned by directed self-assembly (DSA), one necessity for various nanotechnological applications. It is believed that the observed mechanism to form stable edge-on lamellae can be transferred to other crystallizable short chain BCPs, providing potential pathways for sub-10 nm nanotechnology.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)
|0 G:(EU-Grant)101007417
|c 101007417
|f H2020-INFRAIA-2020-1
|x 1
536 _ _ |a HIRS-0018 - Helmholtz-Lund International School - Intelligent instrumentation for exploring matter at different time and length scales (HELIOS) (2020_HIRS-0018)
|0 G:(DE-HGF)2020_HIRS-0018
|c 2020_HIRS-0018
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a Nanolab
|e DESY NanoLab: Microscopy
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-04-20150101
|5 EXP:(DE-H253)Nanolab-04-20150101
|x 0
700 1 _ |a Qi, Peng
|0 P:(DE-H253)PIP1098272
|b 1
700 1 _ |a Maximov, Ivan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Keller, Thomas F.
|0 P:(DE-H253)PIP1019138
|b 3
|e Corresponding author
|u desy
773 _ _ |a 10.1002/admi.202400661
|g p. 2400661
|0 PERI:(DE-600)2750376-8
|n 6
|p 2400661
|t Advanced materials interfaces
|v 12
|y 2025
|x 2196-7350
856 4 _ |u https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202400661
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/Adv%20Materials%20Inter%20-%202025%20-%20Meinhardt%20-%20A%20Pathway%20Toward%20Sub%E2%80%9010%20nm%20Surface%20Nanostructures%20Utilizing%20Block%20Copolymer.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/Oable%20-%20The%20Open%20Access%20Cockpit.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/Published_Supplement_AMeinhardt_AdvMatInter_2025.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/Adv%20Materials%20Inter%20-%202025%20-%20Meinhardt%20-%20A%20Pathway%20Toward%20Sub%E2%80%9010%20nm%20Surface%20Nanostructures%20Utilizing%20Block%20Copolymer.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/612827/files/Published_Supplement_AMeinhardt_AdvMatInter_2025.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:612827
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1088322
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1098272
910 1 _ |a NanoLund and Solid State Physics, Lund University
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1019138
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1019138
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2022
|d 2023-08-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV MATER INTERFACES : 2022
|d 2023-08-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:03:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:03:47Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:03:47Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21