001     612826
005     20241001213101.0
024 7 _ |a 10.5281/zenodo.13223804
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05480
|2 datacite_doi
037 _ _ |a PUBDB-2024-05480
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Diehl, Markus
|0 P:(DE-H253)PIP1002747
|b 0
|e Corresponding author
245 _ _ |a BestLime 1.1: a C++ library for computing Fourier-Bessel transforms with Levin's integration method
250 _ _ |a 1.1
260 _ _ |c 2024
336 7 _ |a Software
|2 DCMI
336 7 _ |a Software
|b sware
|m sware
|0 PUB:(DE-HGF)33
|s 1727787247_1369326
|2 PUB:(DE-HGF)
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Computer Program
|0 6
|2 EndNote
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a Software
|2 DataCite
500 _ _ |a DOI of this version: 10.5281/zenodo.13223804 | License: GNU General Public License v3 | previous version 1.0 published as PUBDB-2024-01643
520 _ _ |a BestLime provides methods for computing the integral of a function f(z) times J(nu, z q), where J(nu, x) is a Bessel function of the first kind. The values of the function f(z) are required on an interpolation grid that is independent of q and can be selected by the user. The order nu of the Bessel function can be positive or zero, the lower limit of the z integration can be zero or finite, and the upper limit can be finite or infinity. By design, the algorithm is not adaptive, which provides high efficiency when the function f(z) is expensive to compute. In turn, the accuracy of the results depends on an appropriate choice of interpolation grid. Changes in version 1.1: (i) Add calls that take a collection of several discretized functions as argument. (ii) Add a method to handle integrands that increase as z goes to infinity. (iii) Add a grid transformation suitable for functions depending on powers of log(z). (iv) Update example programs.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)430915355 - Multi-Parton Wechselwirkungen und Beiträge mit höherem Twist (430915355)
|0 G:(GEPRIS)430915355
|c 430915355
|x 1
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Grocholski, Oskar
|0 P:(DE-H253)PIP1097931
|b 1
773 _ _ |a 10.5281/zenodo.13223804
856 4 _ |u https://doi.org/10.5281/zenodo.13223804
856 4 _ |u https://bib-pubdb1.desy.de/record/612826/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/612826/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612826/files/bestlime-1.1.tgz
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:612826
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1002747
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1097931
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a sware
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)T-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21