001     612774
005     20250804171622.0
024 7 _ |a arXiv:2306.13609
|2 arXiv
024 7 _ |a altmetric:150563959
|2 altmetric
024 7 _ |a 10.1038/s41467-024-51560-x
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05459
|2 datacite_doi
024 7 _ |a 39223131
|2 pmid
024 7 _ |a WOS:001304177200014
|2 WOS
024 7 _ |2 openalex
|a openalex:W4402136494
037 _ _ |a PUBDB-2024-05459
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Ludwig, Markus
|0 P:(DE-H253)PIP1094475
|b 0
245 _ _ |a Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic lithium niobate waveguides
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730294574_214424
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Astronomical precision spectroscopy underpins searches for life beyond Earth, direct observation of the expanding Universe and constraining the potential variability of physical constants across cosmological scales. Laser frequency combs can provide the critically required accurate and precise calibration to the astronomical spectrographs. For cosmological studies, extending the calibration with such astrocombs to the ultraviolet spectral range is highly desirable, however, strong material dispersion and large spectral separation from the established infrared laser oscillators have made this exceedingly challenging. Here, we demonstrate for the first time astronomical spectrograph calibrations with an astrocomb in the ultraviolet spectral range below 400 nm. This is accomplished via chip-integrated highly nonlinear photonics in periodically-poled, nano-fabricated lithium niobate waveguides in conjunction with a robust infrared electro-optic comb generator, as well as a chip-integrated microresonator comb. These results demonstrate a viable route towards astronomical precision spectroscopy in the ultraviolet and may contribute to unlocking the full potential of next generation ground- and future space-based astronomical instruments.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a STARCHIP - Microphotonics-based frequency combs for habitable exoplanet detection (853564)
|0 G:(EU-Grant)853564
|c 853564
|f ERC-2019-STG
|x 1
536 _ _ |a VH-NG-1404 - Ultra-fast nonlinear microphotonics (G:(DE-HGF)2019_VH-NG-1404)
|0 G:(DE-HGF)2019_VH-NG-1404
|c G:(DE-HGF)2019_VH-NG-1404
|x 2
536 _ _ |a DarkComb - Dark-Soliton Engineering in Microresonator Frequency Combs (771410)
|0 G:(EU-Grant)771410
|c 771410
|f ERC-2017-COG
|x 3
542 _ _ |i 2024-09-02
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-09-02
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-H253)CFEL-Exp-20150101
|5 EXP:(DE-H253)CFEL-Exp-20150101
|e Experiments at CFEL
|x 0
700 1 _ |a Ayhan, Furkan
|b 1
700 1 _ |a Schmidt, Tobias M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wildi, Thibault
|0 P:(DE-H253)PIP1094154
|b 3
700 1 _ |a Voumard, Thibault
|0 P:(DE-H253)PIP1093464
|b 4
700 1 _ |a Blum, Roman
|b 5
700 1 _ |a Ye, Zhichao
|b 6
700 1 _ |a Lei, Fuchuan
|b 7
700 1 _ |a Wildi, François
|b 8
700 1 _ |a Pepe, Francesco
|b 9
700 1 _ |a Gaafar, Mahmoud A.
|0 P:(DE-H253)PIP1096574
|b 10
700 1 _ |a Obrzud, Ewelina
|b 11
700 1 _ |a Grassani, Davide
|b 12
700 1 _ |a Moreau, François
|b 13
700 1 _ |a Chazelas, Bruno
|b 14
700 1 _ |a Sottile, Rico
|b 15
700 1 _ |a Torres-Company, Victor
|b 16
700 1 _ |a Brasch, Victor
|b 17
700 1 _ |a Villanueva, Luis G.
|b 18
700 1 _ |a Bouchy, François
|b 19
700 1 _ |a Herr, Tobias
|0 P:(DE-H253)PIP1092814
|b 20
|e Corresponding author
773 1 8 |a 10.1038/s41467-024-51560-x
|b Springer Science and Business Media LLC
|d 2024-09-02
|n 1
|p 7614
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-51560-x
|g Vol. 15, no. 1, p. 7614
|0 PERI:(DE-600)2553671-0
|n 1
|p 7614
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
787 0 _ |a Ludwig, Markus et.al.
|d 2023
|i IsParent
|0 PUBDB-2023-03939
|r arXiv:2306.13609
|t Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic waveguides
856 4 _ |u https://bib-pubdb1.desy.de/record/612774/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612774/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/612774/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612774/files/internal%20review.txt
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/612774/files/Article%20Approval%20Service.pdf?subformat=pdfa
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612774/files/SI_UV_astrocombs.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/612774/files/s41467-024-51560-x.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612774/files/SI_UV_astrocombs.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/612774/files/s41467-024-51560-x.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:612774
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1094475
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1094475
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1094154
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 3
|6 P:(DE-H253)PIP1094154
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 4
|6 P:(DE-H253)PIP1093464
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1093464
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1096574
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1092814
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 20
|6 P:(DE-H253)PIP1092814
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FS-CFEL-2-UMP-20201209
|k FS-CFEL-2-UMP
|l FS-CFEL-2-UMP
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-2-UMP-20201209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1038/378355a0
|9 -- missing cx lookup --
|1 M Mayor
|p 355 -
|2 Crossref
|u Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).
|t Nature
|v 378
|y 1995
999 C 5 |a 10.1038/s42005-019-0249-y
|9 -- missing cx lookup --
|1 T Fortier
|p 1 -
|2 Crossref
|u Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 1–16 (2019).
|t Commun. Phys.
|v 2
|y 2019
999 C 5 |a 10.1126/science.aay3676
|9 -- missing cx lookup --
|1 SA Diddams
|p eaay3676 -
|2 Crossref
|u Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
|t Science
|v 369
|y 2020
999 C 5 |a 10.1111/j.1365-2966.2007.12147.x
|9 -- missing cx lookup --
|1 MT Murphy
|p 839 -
|2 Crossref
|u Murphy, M. T. et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R Astron. Soc. 380, 839–847 (2007).
|t Mon. Not. R Astron. Soc.
|v 380
|y 2007
999 C 5 |a 10.1088/1538-3873/128/964/066001
|9 -- missing cx lookup --
|1 DA Fischer
|p 066001 -
|2 Crossref
|u Fischer, D. A. et al. State of the field: extreme precision radial velocities*. Publ. Astron. Soc. Pac. 128, 066001 (2016).
|t Publ. Astron. Soc. Pac.
|v 128
|y 2016
999 C 5 |a 10.1126/science.1161030
|9 -- missing cx lookup --
|1 T Steinmetz
|p 1335 -
|2 Crossref
|u Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).
|t Science
|v 321
|y 2008
999 C 5 |a 10.1038/nature06854
|9 -- missing cx lookup --
|1 Chih-Hao Li
|p 610 -
|2 Crossref
|u Li, Chih-Hao et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1. Nature 452, 610–612 (2008).
|t Nature
|v 452
|y 2008
999 C 5 |a 10.1140/epjd/e2008-00099-9
|9 -- missing cx lookup --
|1 DA Braje
|p 57 -
|2 Crossref
|u Braje, D. A., Kirchner, M. S., Osterman, S., Fortier, T. & Diddams, S. A. Astronomical spectrograph calibration with broad-spectrum frequency combs. Eur. Phys. J. D 48, 57–66 (2008).
|t Eur. Phys. J. D
|v 48
|y 2008
999 C 5 |a 10.1364/OE.25.015058
|9 -- missing cx lookup --
|1 RA McCracken
|p 15058 -
|2 Crossref
|u McCracken, R. A., Charsley, J. M. & Reid, D. T. A decade of astrocombs: recent advances in frequency combs for astronomy [Invited]. Opt. Express 25, 15058–15078 (2017).
|t Opt. Express
|v 25
|y 2017
999 C 5 |a 10.1109/LPT.2019.2950528
|9 -- missing cx lookup --
|1 T Herr
|p 1890 -
|2 Crossref
|u Herr, T. & McCracken, R. A. Astrocombs: recent advances. IEEE Photon. Technol. Lett. 31, 1890–1893 (2019).
|t IEEE Photon. Technol. Lett.
|v 31
|y 2019
999 C 5 |2 Crossref
|u Marconi, A. et al. ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction. In Ground-Based and Airborne Instrumentation for Astronomy IX 720–735. (SPIE, 2022).
999 C 5 |a 10.1103/PhysRevLett.82.884
|9 -- missing cx lookup --
|1 JK Webb
|p 884 -
|2 Crossref
|u Webb, J. K., Flambaum, V. V., Churchill, C. W., Drinkwater, M. J. & Barrow, J. D. Search for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884–887 (1999).
|t Phys. Rev. Lett.
|v 82
|y 1999
999 C 5 |a 10.1051/0004-6361/202142257
|9 -- missing cx lookup --
|1 MT Murphy
|p A123 -
|2 Crossref
|u Murphy, M. T. et al. Fundamental physics with ESPRESSO: precise limit on variations in the fine-structure constant towards the bright quasar HE 0515-4414. Astron. Astrophys. 658, A123 (2022).
|t Astron. Astrophys.
|v 658
|y 2022
999 C 5 |a 10.1086/148415
|9 -- missing cx lookup --
|1 A Sandage
|p 1307 -
|2 Crossref
|u Sandage, A., Véron, P. & Wyndham, J. D. Optical identification of new quasi-stellar radio sources. Astrophys. J. 142, 1307–1311 (1965).
|t Astrophys. J.
|v 142
|y 1965
999 C 5 |a 10.1111/j.1365-2966.2008.13090.x
|9 -- missing cx lookup --
|1 J Liske
|p 1192 -
|2 Crossref
|u Liske, J. et al. Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 386, 1192–1218 (2008).
|t Mon. Not. R. Astron. Soc.
|v 386
|y 2008
999 C 5 |a 10.1093/mnras/stad1007
|9 -- missing cx lookup --
|1 S Cristiani
|p 2019 -
|2 Crossref
|u Cristiani, S. et al. Spectroscopy of QUBRICS quasar candidates: 1672 new redshifts and a golden sample for the Sandage test of the redshift drift. Mon. Not. R. Astron. Soc. 522, 2019–2028 (2023).
|t Mon. Not. R. Astron. Soc.
|v 522
|y 2023
999 C 5 |a 10.1007/s10686-024-09928-w
|9 -- missing cx lookup --
|2 Crossref
|u Martins, C. et al. Cosmology and fundamental physics with the ELT-ANDES spectrograph. Exp. Astron. 57, 5 (2024).
999 C 5 |a 10.1088/2515-7647/ace869
|9 -- missing cx lookup --
|1 N Jovanovic
|p 042501 -
|2 Crossref
|u Jovanovic, N. et al. 2023 Astrophotonics roadmap: pathways to realizing multi-functional integrated astrophotonic instruments. J. Phys. Photon. 5, 042501 (2023).
|t J. Phys. Photon.
|v 5
|y 2023
999 C 5 |a 10.1093/pasj/psaa085
|9 -- missing cx lookup --
|1 T Hirano
|p 93 -
|2 Crossref
|u Hirano, T. et al. Precision radial velocity measurements by the forward-modeling technique in the near-infrared. Publ. Astron. Soc. Jpn. 72, 93 (2020).
|t Publ. Astron. Soc. Jpn.
|v 72
|y 2020
999 C 5 |a 10.1051/0004-6361/202348532
|9 -- missing cx lookup --
|2 Crossref
|u Milaković, D. & Jethwa, P. A new method for instrumental profile reconstruction of high-resolution spectrographs. A&A. 684, A38 (2024).
999 C 5 |a 10.1364/OE.18.019175
|9 -- missing cx lookup --
|1 AJ Benedick
|p 19175 -
|2 Crossref
|u Benedick, A. J. et al. Visible wavelength astro-comb. Opt. Express 18, 19175–19184 (2010).
|t Opt. Express
|v 18
|y 2010
999 C 5 |a 10.1364/OE.24.008120
|9 -- missing cx lookup --
|1 K Kashiwagi
|p 8120 -
|2 Crossref
|u Kashiwagi, K. et al. Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration. Opt. Express 24, 8120–8131 (2016).
|t Opt. Express
|v 24
|y 2016
999 C 5 |a 10.1038/ncomms10436
|1 X Yi
|9 -- missing cx lookup --
|2 Crossref
|u Yi, X. et al. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy. Nat. Commun. 7, 10436 (2016).
|t Nat. Commun.
|v 7
|y 2016
999 C 5 |a 10.1126/science.aan8083
|9 -- missing cx lookup --
|1 TJ Kippenberg
|p eaan8083 -
|2 Crossref
|u Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
|t Science
|v 361
|y 2018
999 C 5 |a 10.1016/j.physrep.2017.08.004
|9 -- missing cx lookup --
|1 A Pasquazi
|p 1 -
|2 Crossref
|u Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).
|t Phys. Rep.
|v 729
|y 2018
999 C 5 |a 10.1038/s41566-019-0358-x
|9 -- missing cx lookup --
|1 AL Gaeta
|p 158 -
|2 Crossref
|u Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).
|t Nat. Photon.
|v 13
|y 2019
999 C 5 |a 10.1038/s41566-018-0312-3
|9 -- missing cx lookup --
|1 Myoung-Gyun Suh
|p 25 -
|2 Crossref
|u Suh, Myoung-Gyun et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25 (2019).
|t Nat. Photon.
|v 13
|y 2019
999 C 5 |a 10.1038/s41566-018-0309-y
|9 -- missing cx lookup --
|1 E Obrzud
|p 31 -
|2 Crossref
|u Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31 (2019).
|t Nat. Photon.
|v 13
|y 2019
999 C 5 |a 10.1038/nature11092
|9 -- missing cx lookup --
|1 T Wilken
|p 611 -
|2 Crossref
|u Wilken, T. et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485, 611–614 (2012).
|t Nature
|v 485
|y 2012
999 C 5 |a 10.1364/OE.20.013711
|9 -- missing cx lookup --
|1 DF Phillips
|p 13711 -
|2 Crossref
|u Phillips, D. F. et al. Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb. Opt. Express 20, 13711–13726 (2012).
|t Opt. Express
|v 20
|y 2012
999 C 5 |a 10.1364/OL.44.002673
|9 -- missing cx lookup --
|1 AJ Metcalf
|p 2673 -
|2 Crossref
|u Metcalf, A. J., Fredrick, C. D., Terrien, R. C., Papp, S. B. & Diddams, S. A. 30 GHz electro-optic frequency comb spanning 300 THz in the near infrared and visible. Opt. Lett. 44, 2673–2676 (2019).
|t Opt. Lett.
|v 44
|y 2019
999 C 5 |a 10.1364/OPTICA.2.000250
|9 -- missing cx lookup --
|1 AG Glenday
|p 250 -
|2 Crossref
|u Glenday, A. G. et al. Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph. Optica 2, 250–254 (2015).
|t Optica
|v 2
|y 2015
999 C 5 |a 10.1364/OE.25.006450
|9 -- missing cx lookup --
|1 RA McCracken
|p 6450 -
|2 Crossref
|u McCracken, R. A. et al. Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm. Opt. Express 25, 6450–6460 (2017).
|t Opt. Express
|v 25
|y 2017
999 C 5 |a 10.1117/12.2624078
|9 -- missing cx lookup --
|2 Crossref
|u Wu, Y. et al. 20 GHz astronomical laser frequency comb with super-broadband spectral coverage. In Ground-Based and Airborne Instrumentation for Astronomy IX 544–551. (SPIE, 2022).
999 C 5 |a 10.1364/OPTICA.6.000233
|9 -- missing cx lookup --
|1 AJ Metcalf
|p 233 -
|2 Crossref
|u Metcalf, A. J. et al. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica 6, 233–239 (2019).
|t Optica
|v 6
|y 2019
999 C 5 |a 10.1364/OL.44.005290
|9 -- missing cx lookup --
|1 E Obrzud
|p 5290 -
|2 Crossref
|u Obrzud, E. et al. Visible blue-to-red 10 GHz frequency comb via on-chip triple-sum-frequency generation. Opt. Lett. 44, 5290–5293 (2019).
|t Opt. Lett.
|v 44
|y 2019
999 C 5 |a 10.1364/OL.36.003912
|9 -- missing cx lookup --
|1 CR Phillips
|p 3912 -
|2 Crossref
|u Phillips, C. R. et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36, 3912–3914 (2011).
|t Opt. Lett.
|v 36
|y 2011
999 C 5 |a 10.1364/OL.41.003980
|9 -- missing cx lookup --
|1 K Iwakuni
|p 3980 -
|2 Crossref
|u Iwakuni, K. et al. Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared. Opt. Lett. 41, 3980–3983 (2016).
|t Opt. Lett.
|v 41
|y 2016
999 C 5 |a 10.1364/OPTICA.4.001538
|9 -- missing cx lookup --
|1 DD Hickstein
|p 1538 -
|2 Crossref
|u Hickstein, D. D. et al. High-harmonic generation in periodically poled waveguides. Optica 4, 1538–1544 (2017).
|t Optica
|v 4
|y 2017
999 C 5 |a 10.1364/JOSAB.427086
|9 -- missing cx lookup --
|1 J Rutledge
|p 2252 -
|2 Crossref
|u Rutledge, J. et al. Broadband ultraviolet-visible frequency combs from cascaded high-harmonic generation in quasi-phase-matched waveguides. J. Opt. Soc. Am. B 38, 2252–2260 (2021).
|t J. Opt. Soc. Am. B
|v 38
|y 2021
999 C 5 |a 10.1364/OE.487279
|9 -- missing cx lookup --
|1 K Nakamura
|p 20274 -
|2 Crossref
|u Nakamura, K., Kashiwagi, K., Okubo, S. & Inaba, H. Erbium-doped-fiber-based broad visible range frequency comb with a 30 GHz mode spacing for astronomical applications. Opt. Express 31, 20274–20285 (2023).
|t Opt. Express
|v 31
|y 2023
999 C 5 |a 10.1038/s41467-024-45924-6
|1 YukShan Cheng
|9 -- missing cx lookup --
|2 Crossref
|u Cheng, YukShan et al. Continuous ultraviolet to blue-green astrocomb. Nat. Commun. 15, 1466 (2024).
|t Nat. Commun.
|v 15
|y 2024
999 C 5 |a 10.1364/OPTICA.6.000380
|9 -- missing cx lookup --
|1 B Desiatov
|p 380 -
|2 Crossref
|u Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).
|t Optica
|v 6
|y 2019
999 C 5 |a 10.1002/lpor.202000088
|9 -- missing cx lookup --
|1 A Honardoost
|p 2000088 -
|2 Crossref
|u Honardoost, A., Abdelsalam, K. & Fathpour, S. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev. 14, 2000088 (2020).
|t Laser Photon. Rev.
|v 14
|y 2020
999 C 5 |a 10.1515/nanoph-2020-0013
|9 -- missing cx lookup --
|1 Y Qi
|p 1287 -
|2 Crossref
|u Qi, Y. & Li, Y. Integrated lithium niobate photonics. Nanophotonics 9, 1287–1320 (2020).
|t Nanophotonics
|v 9
|y 2020
999 C 5 |a 10.1364/AOP.411024
|9 -- missing cx lookup --
|1 D Zhu
|p 242 -
|2 Crossref
|u Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).
|t Adv. Opt. Photon.
|v 13
|y 2021
999 C 5 |a 10.1038/s41467-023-39047-7
|9 -- missing cx lookup --
|2 Crossref
|u Churaev, M. et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 14, 3499 (2022).
999 C 5 |a 10.1515/nanoph-2022-0749
|9 -- missing cx lookup --
|1 Camille-Sophie Brès
|p 1199 -
|2 Crossref
|u Brès, Camille-Sophie et al. Supercontinuum in integrated photonics: generation, applications, challenges, and perspectives. Nanophotonics 12, 1199–1244 (2023).
|t Nanophotonics
|v 12
|y 2023
999 C 5 |a 10.1364/OPTICA.5.001438
|9 -- missing cx lookup --
|1 C Wang
|p 1438 -
|2 Crossref
|u Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).
|t Optica
|v 5
|y 2018
999 C 5 |a 10.1364/OSAC.2.002914
|9 -- missing cx lookup --
|1 Jia-yang Chen
|p 2914 -
|2 Crossref
|u Chen, Jia-yang et al. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Contin. 2, 2914–2924 (2019).
|t OSA Contin.
|v 2
|y 2019
999 C 5 |a 10.1364/OL.44.001222
|9 -- missing cx lookup --
|1 M Yu
|p 1222 -
|2 Crossref
|u Yu, M., Desiatov, B., Okawachi, Y., Gaeta, A. L. & Lončar, M. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett. 44, 1222–1225 (2019).
|t Opt. Lett.
|v 44
|y 2019
999 C 5 |a 10.1364/OL.44.001492
|9 -- missing cx lookup --
|1 J Lu
|p 1492 -
|2 Crossref
|u Lu, J., Surya, J. B., Liu, X., Xu, Y. & Tang, H. X. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett. 44, 1492–1495 (2019).
|t Opt. Lett.
|v 44
|y 2019
999 C 5 |a 10.1364/OPTICA.7.000040
|9 -- missing cx lookup --
|1 M Jankowski
|p 40 -
|2 Crossref
|u Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).
|t Optica
|v 7
|y 2020
999 C 5 |a 10.1063/5.0028776
|9 -- missing cx lookup --
|1 M Reig Escalé
|p 121301 -
|2 Crossref
|u Reig Escalé, M., Kaufmann, F., Jiang, H., Pohl, D. & Grange, R. Generation of 280 THz-spanning near-ultraviolet light in lithium niobate-on-insulator waveguides with sub-100 pJ pulses. APL Photonics 5, 121301 (2020).
|t APL Photonics
|v 5
|y 2020
999 C 5 |a 10.1364/OPTICA.392363
|9 -- missing cx lookup --
|1 Y Okawachi
|p 702 -
|2 Crossref
|u Okawachi, Y. et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica 7, 702–707 (2020).
|t Optica
|v 7
|y 2020
999 C 5 |a 10.1063/5.0071769
|9 -- missing cx lookup --
|1 AyedAl Sayem
|p 231104 -
|2 Crossref
|u Sayem, AyedAl et al. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl. Phys. Lett. 119, 231104 (2021).
|t Appl. Phys. Lett.
|v 119
|y 2021
999 C 5 |a 10.1063/5.0070103
|9 -- missing cx lookup --
|1 E Obrzud
|p 121303 -
|2 Crossref
|u Obrzud, E. et al. Stable and compact RF-to-optical link using lithium niobate on insulator waveguides. APL Photonics 6, 121303 (2021).
|t APL Photonics
|v 6
|y 2021
999 C 5 |a 10.1364/OL.455046
|9 -- missing cx lookup --
|1 T Park
|p 2706 -
|2 Crossref
|u Park, T. et al. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt. Lett. 47, 2706–2709 (2022).
|t Opt. Lett.
|v 47
|y 2022
999 C 5 |a 10.1038/s41566-023-01364-0
|9 -- missing cx lookup --
|2 Crossref
|u Wu, T.-H. et al. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat. Photonics 18, 218–223 (2024).
999 C 5 |a 10.1117/12.787379
|9 -- missing cx lookup --
|2 Crossref
|u Perruchot, S. et al. The SOPHIE spectrograph: design and technical key-points for high throughput and high stability. In Ground-Based and Airborne Instrumentation for Astronomy II 235–246. (SPIE, 2008).
999 C 5 |a 10.1364/OPTICA.5.000188
|9 -- missing cx lookup --
|1 S Okubo
|p 188 -
|2 Crossref
|u Okubo, S., Onae, A., Nakamura, K., Udem, T. & Inaba, H. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica 5, 188–192 (2018).
|t Optica
|v 5
|y 2018
999 C 5 |a 10.1364/OE.26.034830
|9 -- missing cx lookup --
|1 E Obrzud
|p 34830 -
|2 Crossref
|u Obrzud, E. et al. Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb. Opt. Express 26, 34830–34841 (2018).
|t Opt. Express
|v 26
|y 2018
999 C 5 |a 10.1364/OPTICA.4.000406
|9 -- missing cx lookup --
|1 K Beha
|p 406 -
|2 Crossref
|u Beha, K. et al. Electronic synthesis of light. Optica 4, 406–411 (2017).
|t Optica
|v 4
|y 2017
999 C 5 |a 10.1063/5.0135252
|9 -- missing cx lookup --
|1 T Voumard
|p 036114 -
|2 Crossref
|u Voumard, T. et al. Simulating supercontinua from mixed and cascaded nonlinearities. APL Photonics 8, 036114 (2023).
|t APL Photonics
|v 8
|y 2023
999 C 5 |a 10.1109/3.59667
|9 -- missing cx lookup --
|1 T Suhara
|p 1265 -
|2 Crossref
|u Suhara, T. & Nishihara, H. Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings. IEEE J. Quantum Electron. 26, 1265–1276 (1990).
|t IEEE J. Quantum Electron.
|v 26
|y 1990
999 C 5 |a 10.1117/12.857951
|9 -- missing cx lookup --
|2 Crossref
|u Wildi, F., Pepe, F., Chazelas, B., Curto, G. L. & Lovis, C. A Fabry-Perot calibrator of the HARPS radial velocity spectrograph: performance report. In Ground-Based and Airborne Instrumentation for Astronomy III 1853–1863. (SPIE, 2010).
999 C 5 |a 10.1117/12.926841
|9 -- missing cx lookup --
|2 Crossref
|u Wildi, F., Chazelas, B. & Pepe, F. A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs. In Ground-Based and Airborne Instrumentation for Astronomy IV 1122–1129. (SPIE, 2012).
999 C 5 |a 10.1051/0004-6361/201219979
|9 -- missing cx lookup --
|1 F Bouchy
|p A49 -
|2 Crossref
|u Bouchy, F. et al. SOPHIE+: first results of an octagonal-section fiber for high-precision radial velocity measurements. Astronom. Astrophys. 549, A49 (2013).
|t Astronom. Astrophys.
|v 549
|y 2013
999 C 5 |a 10.1051/0004-6361/202039345
|9 -- missing cx lookup --
|1 TM Schmidt
|p A144 -
|2 Crossref
|u Schmidt, T. M. et al. Fundamental physics with ESPRESSO: towards an accurate wavelength calibration for a precision test of the fine-structure constant. Astronom. Astrophys. 646, A144 (2021).
|t Astronom. Astrophys.
|v 646
|y 2021
999 C 5 |a 10.1051/0004-6361/201322746
|9 -- missing cx lookup --
|1 M Zechmeister
|p A59 -
|2 Crossref
|u Zechmeister, M., Anglada-Escudé, G. & Reiners, A. Flat-relative optimal extraction - A quick and efficient algorithm for stabilised spectrographs. Astronom. Astrophys. 561, A59 (2014).
|t Astronom. Astrophys.
|v 561
|y 2014
999 C 5 |a 10.1051/0004-6361/201833852
|9 -- missing cx lookup --
|1 F Cersullo
|p A122 -
|2 Crossref
|u Cersullo, F., Coffinet, A., Chazelas, B., Lovis, C. & Pepe, F. New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons. Astronom. Astrophys. 624, A122 (2019).
|t Astronom. Astrophys.
|v 624
|y 2019
999 C 5 |a 10.1051/0004-6361:20010730
|9 -- missing cx lookup --
|1 F Bouchy
|p 733 -
|2 Crossref
|u Bouchy, F., Pepe, F. & Queloz, D. Fundamental photon noise limit to radial velocity measurements. Astronom. Astrophys. 374, 733–739 (2001).
|t Astronom. Astrophys.
|v 374
|y 2001
999 C 5 |a 10.1051/0004-6361/201833272
|9 -- missing cx lookup --
|1 A Coffinet
|p A27 -
|2 Crossref
|u Coffinet, A., Lovis, C., Dumusque, X. & Pepe, F. New wavelength calibration of the HARPS spectrograph. Astronom. Astrophys. 629, A27 (2019).
|t Astronom. Astrophys.
|v 629
|y 2019
999 C 5 |a 10.1051/eas/0937031
|9 -- missing cx lookup --
|1 F Bouchy
|p 247 -
|2 Crossref
|u Bouchy, F. et al. Charge transfer inefficiency effect for high-precision radial velocity measurements. EAS Publ. Ser. 37, 247–253 (2009).
|t EAS Publ. Ser.
|v 37
|y 2009
999 C 5 |a 10.1088/0067-0049/211/1/4
|9 -- missing cx lookup --
|1 SL Redman
|p 4 -
|2 Crossref
|u Redman, S. L., Nave, G. & Sansonetti, C. J. The spectrum of thorium from 250 nm to 5500 nm: Ritz wavelengths and optimized energy levels. Astrophys. J. Suppl. Ser. 211, 4 (2014).
|t Astrophys. J. Suppl. Ser.
|v 211
|y 2014
999 C 5 |a 10.1038/s41566-023-01280-3
|9 -- missing cx lookup --
|2 Crossref
|u Helgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photon. 17, 992–999 (2023).
999 C 5 |a 10.1038/nphoton.2013.343
|9 -- missing cx lookup --
|1 T Herr
|p 145 -
|2 Crossref
|u Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145–152 (2014).
|t Nat. Photonics
|v 8
|y 2014
999 C 5 |a 10.1364/OL.43.005745
|9 -- missing cx lookup --
|1 SJ Herr
|p 5745 -
|2 Crossref
|u Herr, S. J. et al. Frequency comb up- and down-conversion in synchronously driven χ(2) optical microresonators. Opt. Lett. 43, 5745–5748 (2018).
|t Opt. Lett.
|v 43
|y 2018
999 C 5 |a 10.1088/2515-7647/ac1729
|9 -- missing cx lookup --
|1 M Jankowski
|p 042005 -
|2 Crossref
|u Jankowski, M., Mishra, J. & Fejer, M. M. Dispersion-engineered nanophotonics: a flexible tool for nonclassical light. J. Phys. Photonics 3, 042005 (2021).
|t J. Phys. Photonics
|v 3
|y 2021
999 C 5 |a 10.1038/s41467-023-42289-0
|1 A Roy
|9 -- missing cx lookup --
|2 Crossref
|u Roy, A. et al. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nat. Commun. 14, 6549 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1364/OE.27.035719
|9 -- missing cx lookup --
|1 Z Ye
|p 35719 -
|2 Crossref
|u Ye, Z., Twayana, K., Andrekson, P. A. & Torres-Company, V. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express 27, 35719–35727 (2019).
|t Opt. Express
|v 27
|y 2019
999 C 5 |a 10.1002/lpor.202100147
|9 -- missing cx lookup --
|1 Z Ye
|p 2100147 -
|2 Crossref
|u Ye, Z. et al. Integrated, ultra-compact high-Q silicon nitride microresonators for low-repetition-rate soliton microcombs. Laser Photon. Rev. 16, 2100147 (2022).
|t Laser Photon. Rev.
|v 16
|y 2022
999 C 5 |a 10.1364/OL.35.000010
|9 -- missing cx lookup --
|1 F Liu
|p 10 -
|2 Crossref
|u Liu, F. et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals. Opt. Lett. 35, 10–12 (2010).
|t Opt. Lett.
|v 35
|y 2010
999 C 5 |a 10.1364/OL.44.002314
|9 -- missing cx lookup --
|1 L He
|p 2314 -
|2 Crossref
|u He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett. 44, 2314–2317 (2019).
|t Opt. Lett.
|v 44
|y 2019
999 C 5 |a 10.1038/s41467-019-11034-x
|1 X Liu
|9 -- missing cx lookup --
|2 Crossref
|u Liu, X. et al. Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide. Nat. Commun. 10, 2971 (2019).
|t Nat. Commun.
|v 10
|y 2019
999 C 5 |a 10.1117/12.2055784
|9 -- missing cx lookup --
|2 Crossref
|u Probst, R. A. et al. A laser frequency comb featuring sub-cm/s precision for routine operation on HARPS. In Ground-Based and Airborne Instrumentation for Astronomy V 498–509. (SPIE, 2014).
999 C 5 |a 10.1364/JOSAB.414298
|9 -- missing cx lookup --
|2 Crossref
|u Younesi, M. et al. Periodic poling with a micrometer-range period in thin-film lithium niobate on insulator. J. Opt. Soc. Am. B 38, 685–691.
999 C 5 |a 10.1364/OL.435603
|9 -- missing cx lookup --
|2 Crossref
|u Newman, Z. L. et al. High-performance, compact optical standard. Opt. Lett. 46, 4702–4705 (2021).
999 C 5 |a 10.1051/0004-6361/201833910
|9 -- missing cx lookup --
|1 N Aghanim
|p A6 -
|2 Crossref
|u Aghanim, N. et al. Planck 2018 results - VI. Cosmological parameters. Astronom. Astrophys. 641, A6 (2020).
|t Astronom. Astrophys.
|v 641
|y 2020


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21