000612768 001__ 612768 000612768 005__ 20251017170337.0 000612768 0247_ $$2arXiv$$aarXiv:2401.10160 000612768 0247_ $$2doi$$a10.1038/s41467-024-50842-8 000612768 0247_ $$2altmetric$$aaltmetric:166875119 000612768 0247_ $$2pmid$$apmid:39147760 000612768 0247_ $$2WOS$$aWOS:001292162100035 000612768 0247_ $$2openalex$$aopenalex:W4401611279 000612768 037__ $$aPUBDB-2024-05453 000612768 041__ $$aEnglish 000612768 082__ $$a500 000612768 1001_ $$0P:(DE-H253)PIP1094154$$aWildi, Thibault$$b0 000612768 245__ $$aPhase-stabilised self-injection-locked microcomb 000612768 260__ $$a[London]$$bNature Publishing Group UK$$c2024 000612768 3367_ $$2DRIVER$$aarticle 000612768 3367_ $$2DataCite$$aOutput Types/Journal article 000612768 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726058064_2597173 000612768 3367_ $$2BibTeX$$aARTICLE 000612768 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000612768 3367_ $$00$$2EndNote$$aJournal Article 000612768 500__ $$aPlease correct the following mistakes in record: https://bib-pubdb1.desy.de/record/601438 Record type preprint instead of journal article.Best regards, Alexander Ulanov (geändert 30.1.24 T.F.) 000612768 520__ $$aMicroresonator frequency combs (microcombs) hold potential for precision metrology in a compact form factor impacting applications such as point-of-care diagnostics, environmental monitoring, time-keeping, navigation and astronomy. Through the principle of self-injection locking, electrically-driven chip-based microcombs with low complexity are now possible. However, phase-stabilisation of such self-injection-locked microcombs, a prerequisite for metrological frequency combs, has yet to be attained. Here, addressing this critical need, we demonstrate full phase-stabilisation of a self-injection-locked microcomb. The microresonator is implemented in a silicon nitride photonic chip, and by controlling a pump laser diode and a microheater with low voltage signals (sub 1.5 V), we achieve independent actuation of the comb's offset and line spacing frequencies. Both actuators reach a bandwidth of over 100 kHz and permit phase-locking of the microcomb to external frequency references. These results establish photonic chip-based, self-injection-locked microcombs as a low-complexity, yet versatile source for coherent precision metrology in emerging applications. 000612768 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0 000612768 536__ $$0G:(EU-Grant)853564$$aSTARCHIP - Microphotonics-based frequency combs for habitable exoplanet detection (853564)$$c853564$$fERC-2019-STG$$x1 000612768 536__ $$0G:(DE-HGF)2019_VH-NG-1404$$aVH-NG-1404 - Ultra-fast nonlinear microphotonics (G:(DE-HGF)2019_VH-NG-1404)$$cG:(DE-HGF)2019_VH-NG-1404$$x2 000612768 536__ $$0G:(EU-Grant)965124$$aFEMTOCHIP - FEMTOSECOND LASER ON A CHIP (965124)$$c965124$$fH2020-FETOPEN-2018-2019-2020-01$$x3 000612768 542__ $$2Crossref$$i2024-08-15$$uhttps://creativecommons.org/licenses/by/4.0 000612768 542__ $$2Crossref$$i2024-08-15$$uhttps://creativecommons.org/licenses/by/4.0 000612768 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000612768 693__ $$0EXP:(DE-H253)CFEL-Exp-20150101$$5EXP:(DE-H253)CFEL-Exp-20150101$$eExperiments at CFEL$$x0 000612768 7001_ $$0P:(DE-H253)PIP1101456$$aUlanov, Alexander$$b1 000612768 7001_ $$0P:(DE-H253)PIP1093464$$aVoumard, Thibault$$b2 000612768 7001_ $$0P:(DE-H253)PIP1094526$$aRuhnke, Bastian$$b3 000612768 7001_ $$0P:(DE-H253)PIP1092814$$aHerr, Tobias$$b4$$eCorresponding author 000612768 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-50842-8$$bSpringer Science and Business Media LLC$$d2024-08-15$$n1$$p7030$$tNature Communications$$v15$$x2041-1723$$y2024 000612768 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-50842-8$$gVol. 15, no. 1, p. 7030$$n1$$p7030$$tNature Communications$$v15$$x2041-1723$$y2024 000612768 7870_ $$0PUBDB-2024-00192$$aWildi, Thibault et.al.$$d2024$$iIsParent$$rarXiv:2401.10160$$tPhase-stabilised self-injection-locked microcomb 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/Article%20Approval%20Service.pdf 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/HTML-Approval_of_scientific_publication.html 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/PDF-Approval_of_scientific_publication.pdf 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/internal%20review.pdf 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/Article%20Approval%20Service.pdf?subformat=pdfa$$xpdfa 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/SI_phase_stabilized_microcomb.pdf$$yRestricted 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/internal%20review.pdf?subformat=pdfa$$xpdfa 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/s41467-024-50842-8.pdf$$yOpenAccess 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/SI_phase_stabilized_microcomb.pdf?subformat=pdfa$$xpdfa$$yRestricted 000612768 8564_ $$uhttps://bib-pubdb1.desy.de/record/612768/files/s41467-024-50842-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000612768 8767_ $$92024-08-13$$a52909833$$d2024-08-13$$eAPC$$jDEAL$$lSpringerNature$$v17.58$$zEinzelnachweis Rechnung SN-2024-01442-b 000612768 8767_ $$8SN-2025-01342-e$$92025-09-25$$d2024-08-13$$ePayment fee$$jDEAL$$lSpringerNature$$v0.35$$zMPDL Gebühr 000612768 8767_ $$92024-08-13$$a52909833$$d2024-08-13$$eAPC$$jStorniert$$lSpringerNature$$zDFG OAPK (Projekt) 000612768 8767_ $$92024-08-13$$a52909833$$d2024-08-13$$eAPC$$jZahlung erfolgt$$lSpringerNature$$zDFG OAPK (Projekt) 000612768 909CO $$ooai:bib-pubdb1.desy.de:612768$$popenCost$$pec_fundedresources$$pOpenAPC$$pVDB$$popenaire 000612768 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094154$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000612768 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1094154$$aCentre for Free-Electron Laser Science$$b0$$kCFEL 000612768 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1101456$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000612768 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1101456$$aCentre for Free-Electron Laser Science$$b1$$kCFEL 000612768 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1093464$$aCentre for Free-Electron Laser Science$$b2$$kCFEL 000612768 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093464$$aExternal Institute$$b2$$kExtern 000612768 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093464$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY 000612768 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094526$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000612768 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1094526$$aCentre for Free-Electron Laser Science$$b3$$kCFEL 000612768 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094526$$aExternal Institute$$b3$$kExtern 000612768 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1092814$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000612768 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1092814$$aCentre for Free-Electron Laser Science$$b4$$kCFEL 000612768 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0 000612768 9141_ $$y2024 000612768 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-05-02T09:09:09Z 000612768 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29 000612768 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29 000612768 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29 000612768 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29 000612768 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29 000612768 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z 000612768 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z 000612768 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z 000612768 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02 000612768 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02 000612768 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000612768 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000612768 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000612768 915pc $$0PC:(DE-HGF)0178$$2APC$$aDEAL: Springer Nature 01.01.2024 000612768 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 000612768 9201_ $$0I:(DE-H253)FS-CFEL-2-UMP-20201209$$kFS-CFEL-2-UMP$$lFS-CFEL-2-UMP$$x0 000612768 980__ $$ajournal 000612768 980__ $$aVDB 000612768 980__ $$aI:(DE-H253)FS-CFEL-2-UMP-20201209 000612768 980__ $$aAPC 000612768 980__ $$aUNRESTRICTED 000612768 9801_ $$aAPC 000612768 999C5 $$1T Fortier$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-019-0249-y$$p1 -$$tCommun. Phys.$$uFortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 1–16 (2019).$$v2$$y2019 000612768 999C5 $$1SA Diddams$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aay3676$$peaay3676 -$$tScience$$uDiddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).$$v369$$y2020 000612768 999C5 $$1P Del’Haye$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature06401$$p1214 -$$tNature$$uDel’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).$$v450$$y2007 000612768 999C5 $$1T Herr$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2013.343$$p145 -$$tNat. Photonics$$uHerr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145–152 (2014).$$v8$$y2014 000612768 999C5 $$1JS Levy$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2009.259$$p37 -$$tNat. Photonics$$uLevy, J. S. et al. CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4, 37–40 (2010).$$v4$$y2010 000612768 999C5 $$1V Brasch$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aad4811$$p357 -$$tScience$$uBrasch, V. et al. Photonic chip-based optical frequency comb using soliton cherenkov radiation. Science 351, 357–360 (2016).$$v351$$y2016 000612768 999C5 $$1TJ Kippenberg$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aan8083$$peaan8083 -$$tScience$$uKippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).$$v361$$y2018 000612768 999C5 $$1AL Gaeta$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-019-0358-x$$p158 -$$tNat. Photonics$$uGaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).$$v13$$y2019 000612768 999C5 $$1A Pasquazi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2017.08.004$$p1 -$$tPhys. Rep.$$uPasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).$$v729$$y2018 000612768 999C5 $$1VV Vasil’ev$$2Crossref$$9-- missing cx lookup --$$a10.1070/QE1996v026n08ABEH000747$$p657 -$$tQuantum Electron.$$uVasil’ev, V. V. et al. High-coherence diode laser with optical feedback via a microcavity with ’whispering gallery’ modes. Quantum Electron. 26, 657 (1996).$$v26$$y1996 000612768 999C5 $$1W Liang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.35.002822$$p2822 -$$tOpt. Lett.$$uLiang, W. et al. Whispering-gallery-mode resonator-based ultranarrow linewidth external cavity semiconductor laser. Opt. Lett. 35, 2822–2824 (2010).$$v35$$y2010 000612768 999C5 $$1NM Kondratiev$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11467-022-1245-3$$tFront. Phys.$$uKondratiev, N. M. et al. Recent advances in laser self-injection locking to high-Q microresonators. Front. Phys. 18, 21305 (2023).$$v18$$y2023 000612768 999C5 $$1W Liang$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms8957$$tNat. Commun.$$uLiang, W. et al. High spectral purity kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).$$v6$$y2015 000612768 999C5 $$1NG Pavlov$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-018-0277-2$$p694 -$$tNat. Photonics$$uPavlov, N. G. et al. Narrow-linewidth lasing and soliton kerr microcombs with ordinary laser diodes. Nat. Photonics 12, 694–698 (2018).$$v12$$y2018 000612768 999C5 $$1B Stern$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0598-9$$p401 -$$tNature$$uStern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401 (2018).$$v562$$y2018 000612768 999C5 $$1AS Raja$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-019-08498-2$$tNat. Commun.$$uRaja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).$$v10$$y2019 000612768 999C5 $$1B Shen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2358-x$$p365 -$$tNature$$uShen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).$$v582$$y2020 000612768 999C5 $$1C Xiang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-26804-9$$tNat. Commun.$$uXiang, C. et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 12, 6650 (2021).$$v12$$y2021 000612768 999C5 $$1AS Voloshin$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-20196-y$$tNat. Commun.$$uVoloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12, 235 (2021).$$v12$$y2021 000612768 999C5 $$1AE Ulanov$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-023-01367-x$$p294 -$$tNat. Photonics$$uUlanov, A. E. et al. Synthetic reflection self-injection-locked microcombs. Nat. Photonics 18, 294–299 (2024).$$v18$$y2024 000612768 999C5 $$1P Del’Haye$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.053903$$p053903 -$$tPhys. Rev. Lett.$$uDel’Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).$$v101$$y2008 000612768 999C5 $$1P Del’Haye$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2016.105$$p516 -$$tNat. Photonics$$uDel’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics 10, 516–520 (2016).$$v10$$y2016 000612768 999C5 $$1TC Briles$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.43.002933$$p2933 -$$tOpt. Lett.$$uBriles, T. C. et al. Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Opt. Lett. 43, 2933 (2018).$$v43$$y2018 000612768 999C5 $$1Q-X Ji$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.478710$$p279 -$$tOptica$$uJi, Q.-X. et al. Engineered zero-dispersion microcombs using CMOS-ready photonics. Optica 10, 279–285 (2023).$$v10$$y2023 000612768 999C5 $$1X Xue$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2015.137$$p594 -$$tNat. Photonics$$uXue, X. et al. Mode-locked dark pulse kerr combs in normal-dispersion microresonators. Nat. Photonics 9, 594–600 (2015).$$v9$$y2015 000612768 999C5 $$1C Joshi$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.41.002565$$p2565 -$$tOpt. Lett.$$uJoshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).$$v41$$y2016 000612768 999C5 $$1F Leo$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2010.120$$p471 -$$tNat. Photonics$$uLeo, F. et al. Temporal cavity solitons in one-dimensional kerr media as bits in an all-optical buffer. Nat. Photonics 4, 471–476 (2010).$$v4$$y2010 000612768 999C5 $$1S-P Yu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-021-00800-3$$p461 -$$tNat. Photonics$$uYu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photonics 15, 461–467 (2021).$$v15$$y2021 000612768 999C5 $$1E Lucas$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-023-01252-7$$p943 -$$tNat. Photonics$$uLucas, E., Yu, S.-P., Briles, T. C., Carlson, D. R. & Papp, S. B. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photonics 17, 943–950 (2023).$$v17$$y2023 000612768 999C5 $$1G Moille$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-023-01253-6$$p1 -$$tCommun. Phys.$$uMoille, G., Lu, X., Stone, J., Westly, D. & Srinivasan, K. Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys. 6, 1–11 (2023).$$v6$$y2023 000612768 999C5 $$1SB Papp$$2Crossref$$uPapp, S. B., Del’Haye, P. & Diddams, S. A. Mechanical control of a microrod-resonator optical frequency comb. Phys. Rev. X 3, 031003 (2013).$$y2013 000612768 999C5 $$1J Liu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2465-8$$p385 -$$tNature$$uLiu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).$$v583$$y2020 000612768 999C5 $$1J Wang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.467721$$p31816 -$$tOpt. Express$$uWang, J., Liu, K., Harrington, M. W., Rudy, R. Q. & Blumenthal, D. J. Silicon nitride stress-optic microresonator modulator for optical control applications. Opt. Express 30, 31816–31827 (2022).$$v30$$y2022 000612768 999C5 $$1Y He$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-39229-3$$tNat. Commun.$$uHe, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nat. Commun. 14, 3467 (2023).$$v14$$y2023 000612768 999C5 $$1SB Papp$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.1.000010$$p10 -$$tOptica$$uPapp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).$$v1$$y2014 000612768 999C5 $$1J Li$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1252909$$p309 -$$tScience$$uLi, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).$$v345$$y2014 000612768 999C5 $$1JD Jost$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.2.000706$$p706 -$$tOptica$$uJost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).$$v2$$y2015 000612768 999C5 $$1JD Jost$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.40.004723$$p4723 -$$tOpt. Lett.$$uJost, J. D. et al. All-optical stabilization of a soliton frequency comb in a crystalline microresonator. Opt. Lett. 40, 4723–4726 (2015).$$v40$$y2015 000612768 999C5 $$1V Brasch$$2Crossref$$9-- missing cx lookup --$$a10.1038/lsa.2016.202$$pe16202 -$$tLight.: Sci. Appl.$$uBrasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton kerr frequency comb. Light.: Sci. Appl. 6, e16202–e16202 (2017).$$v6$$y2017 000612768 999C5 $$1K Wu$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.486755$$p626 -$$tOptica$$uWu, K. et al. Vernier microcombs for high-frequency carrier envelope offset and repetition rate detection. Optica 10, 626–633 (2023).$$v10$$y2023 000612768 999C5 $$1G Moille$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-023-06730-0$$p267 -$$tNature$$uMoille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).$$v624$$y2023 000612768 999C5 $$1T Voumard$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.448575$$p1379 -$$tOpt. Lett.$$uVoumard, T. et al. 1-GHz dual-comb spectrometer with high mutual coherence for fast and broadband measurements. Opt. Lett. 47, 1379–1382 (2022).$$v47$$y2022 000612768 999C5 $$1P Del’Haye$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.263901$$p263901 -$$tPhys. Rev. Lett.$$uDel’Haye, P., Papp, S. B. & Diddams, S. A. Hybrid electro-optically modulated microcombs. Phys. Rev. Lett. 109, 263901 (2012).$$v109$$y2012 000612768 999C5 $$2Crossref$$uGaafar, M. A. et al. Femtosecond Pulse Amplification on a Chip. arXiv: 2311.04758 [physics] (2023). 000612768 999C5 $$1DR Carlson$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.42.002314$$p2314 -$$tOpt. Lett.$$uCarlson, D. R. et al. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett. 42, 2314–2317 (2017).$$v42$$y2017 000612768 999C5 $$1Y Okawachi$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.392363$$p702 -$$tOptica$$uOkawachi, Y. et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica 7, 702–707 (2020).$$v7$$y2020 000612768 999C5 $$1E Obrzud$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0070103$$p121303 -$$tAPL Photonics$$uObrzud, E. et al. Stable and compact RF-to-optical link using lithium niobate on insulator waveguides. APL Photonics 6, 121303 (2021).$$v6$$y2021 000612768 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.6028/NIST.SP.1065$$uRiley, W. and Howe, D. Handbook of Frequency Stability Analysis. NIST, 2008.