001     612518
005     20250715170928.0
024 7 _ |a 10.1038/s41467-024-50759-2
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05371
|2 datacite_doi
024 7 _ |a altmetric:165712592
|2 altmetric
024 7 _ |a pmid:39060261
|2 pmid
024 7 _ |a WOS:001279103300003
|2 WOS
024 7 _ |2 openalex
|a openalex:W4401056128
037 _ _ |a PUBDB-2024-05371
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Livshits, Ester
|0 0000-0002-3088-6290
|b 0
245 _ _ |a Symmetry-breaking dynamics of a photoionized carbon dioxide dimer
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722429841_2814414
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photoionization can initiate structural reorganization of molecular matter and drive formation of new chemical bonds. Here, we used time-resolved extreme ultraviolet (EUV) pump – EUV probe Coulomb explosion imaging of carbon dioxide dimer ion $(CO_2)_2^+$dynamics, that combined with ab initio molecular dynamics simulations, revealed unexpected asymmetric structural rearrangement. We show that ionization by the pump pulse induces rearrangement from the slipped-parallel (C$_{2h}$) geometry of the neutral $CO_2$ dimer towards a T-shaped (C$_{2v}$) structure on the ~100 fs timescale, although the most stable slipped-parallel (C$_{2h}$) structure of the ionic dimer. Moreover, we find that excited states of the ionized $CO_2$ dimer can exhibit formation of a $CO_3$ moiety in the $CO_2O_4^+$ complex that can persist even after a suitably time-delayed second photoionization in a metastable $CO_2O_4^+$ dication. Our results suggest that charge asymmetry plays an important role in the ionization-induced dynamics in such dimers that are present in $C_2$ rich environments.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 1
536 _ _ |a FS-Proposal: F-20191536 (F-20191536)
|0 G:(DE-H253)F-20191536
|c F-20191536
|x 2
542 _ _ |i 2024-07-27
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-nd/4.0
542 _ _ |i 2024-07-27
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-nd/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a FLASH2
|f FLASH2 Beamline FL26
|1 EXP:(DE-H253)FLASHII-20150901
|0 EXP:(DE-H253)F-FL26-20150901
|6 EXP:(DE-H253)F-FL26-20150901
|x 0
700 1 _ |a Bittner, Dror M.
|0 P:(DE-H253)PIP1090915
|b 1
700 1 _ |a Trost, Florian
|0 0000-0001-7756-286X
|b 2
700 1 _ |a Meister, Severin
|0 0000-0002-5245-8377
|b 3
700 1 _ |a Lindenblatt, Hannes
|0 0000-0003-1728-7979
|b 4
700 1 _ |a Treusch, Rolf
|0 P:(DE-H253)PIP1001400
|b 5
700 1 _ |a Gope, Krishnendu
|0 0000-0001-6795-5010
|b 6
700 1 _ |a Pfeifer, Thomas
|0 0000-0002-5312-3747
|b 7
700 1 _ |a Baer, Roi
|0 0000-0001-8432-1925
|b 8
|e Corresponding author
700 1 _ |a Moshammer, Robert
|0 P:(DE-H253)PIP1007317
|b 9
700 1 _ |a Strasser, Daniel
|0 0000-0002-9000-3816
|b 10
|e Corresponding author
773 1 8 |a 10.1038/s41467-024-50759-2
|b Springer Science and Business Media LLC
|d 2024-07-27
|n 1
|p 6322
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-50759-2
|g Vol. 15, no. 1, p. 6322
|0 PERI:(DE-600)2553671-0
|n 1
|p 6322
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/612518/files/s41467-024-50759-2-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/612518/files/s41467-024-50759-2-1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:612518
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1090915
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1001400
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1007317
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-FLASH-O-20160930
|k FS-FLASH-O
|l FLASH Wissenschaftlicher Nutzerbetrieb
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-FLASH-O-20160930
980 1 _ |a FullTexts
999 C 5 |a 10.1002/ange.202218770
|9 -- missing cx lookup --
|2 Crossref
|u Licht, O. et al. Peptide bond formation in the protonated serine dimer following vacuum UV photon‐induced excitation. Angew. Chemie 135, 202218770 (2023).
999 C 5 |a 10.1073/pnas.1616464114
|9 -- missing cx lookup --
|1 T Stein
|p E4125 -
|2 Crossref
|u Stein, T. et al. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation. Proc. Natl Acad. Sci. 114, E4125–E4133 (2017).
|t Proc. Natl Acad. Sci.
|v 114
|y 2017
999 C 5 |a 10.1073/pnas.2101371118
|9 -- missing cx lookup --
|1 J Jose
|p 1 -
|2 Crossref
|u Jose, J., Zamir, A. & Stein, T. Molecular dynamics reveals formation path of benzonitrile and other molecules in conditions relevant to the interstellar medium. Proc. Natl Acad. Sci. 118, 1–7 (2021).
|t Proc. Natl Acad. Sci.
|v 118
|y 2021
999 C 5 |a 10.1039/C7CP02233F
|9 -- missing cx lookup --
|1 MC Castrovilli
|p 19807 -
|2 Crossref
|u Castrovilli, M. C. et al. Fragmentation of pure and hydrated clusters of 5Br-uracil by low energy carbon ions: observation of hydrated fragments. Phys. Chem. Chem. Phys. 19, 19807–19814 (2017).
|t Phys. Chem. Chem. Phys.
|v 19
|y 2017
999 C 5 |a 10.1039/D2PY01258H
|9 -- missing cx lookup --
|1 F Siragusa
|p 1164 -
|2 Crossref
|u Siragusa, F., Detrembleur, C. & Grignard, B. The advent of recyclable CO2 -based polycarbonates. Polym. Chem. 14, 1164–1183 (2023).
|t Polym. Chem.
|v 14
|y 2023
999 C 5 |a 10.1002/ange.202116066
|9 -- missing cx lookup --
|2 Crossref
|u Ngassam Tounzoua, C., Grignard, B. & Detrembleur, C. Exovinylene cyclic carbonates: Multifaceted CO2 ‐based building blocks for modern chemistry and polymer science. Angew. Chemie 134, e202116066 (2022).
999 C 5 |a 10.1080/00268976.2010.496742
|9 -- missing cx lookup --
|1 M Dehghany
|p 2195 -
|2 Crossref
|u Dehghany, M., McKellar, A. R. W., Afshari, M. & Moazzen-Ahmadi, N. High-resolution infrared spectroscopy of carbon dioxide dimers, trimers, and larger clusters. Mol. Phys. 108, 2195–2205 (2010).
|t Mol. Phys.
|v 108
|y 2010
999 C 5 |a 10.1063/1.3653230
|9 -- missing cx lookup --
|1 JD McMahon
|p 154309 -
|2 Crossref
|u McMahon, J. D. & Lane, J. R. Explicit correlation and basis set superposition error: The structure and energy of carbon dioxide dimer. J. Chem. Phys. 135, 154309 (2011).
|t J. Chem. Phys.
|v 135
|y 2011
999 C 5 |a 10.1021/j100297a007
|9 -- missing cx lookup --
|1 AJ Illies
|p 3489 -
|2 Crossref
|u Illies, A. J., McKee, M. L. & Schlegel, H. B. Ab initio study of the carbon dioxide dimer and the carbon dioxide ion complexes [(CO2)2+ and (CO2)3+]. J. Phys. Chem. 91, 3489–3494 (1987).
|t J. Phys. Chem.
|v 91
|y 1987
999 C 5 |a 10.1002/anie.200704286
|9 -- missing cx lookup --
|1 J Roithová
|p 9316 -
|2 Crossref
|u Roithová, J., Ricketts, C. L., Schröder, D. & Price, S. D. Bond formation with maintenance of twofold charge: Generation of C2O32+ in the reaction of CO22+ with CO2. Angew Chem. Int. Ed. 46, 9316–9319 (2007).
|t Angew Chem. Int. Ed.
|v 46
|y 2007
999 C 5 |a 10.1021/jp1020559
|9 -- missing cx lookup --
|1 F Feixas
|p 6681 -
|2 Crossref
|u Feixas, F. et al. Bonding analysis of the [C2O4] 2+ intermediate formed in the reaction of CO22+ with neutral CO2. J. Phys. Chem. A 114, 6681–6688 (2010).
|t J. Phys. Chem. A
|v 114
|y 2010
999 C 5 |a 10.1029/2022JE007456
|9 -- missing cx lookup --
|2 Crossref
|u Graham, R. J., Lichtenberg, T. & Pierrehumbert, R. T. CO2 ocean bistability on terrestrial exoplanets. J. Geophys. Res. Planets 127, e2022JE007456 (2022).
999 C 5 |a 10.1016/0022-4073(88)90111-2
|9 -- missing cx lookup --
|1 K Fox
|p 177 -
|2 Crossref
|u Fox, K. & Kim, S. J. Spectra of van der Waals complexes (dimers) with applications to planetary atmospheres. J. Quant. Spectrosc. Radiat. Transf. 40, 177–184 (1988).
|t J. Quant. Spectrosc. Radiat. Transf.
|v 40
|y 1988
999 C 5 |a 10.1126/sciadv.adg7864
|9 -- missing cx lookup --
|1 K Schnorr
|p eadg7864 -
|2 Crossref
|u Schnorr, K. et al. Direct tracking of ultrafast proton transfer in water dimers. Sci. Adv. 9, eadg7864 (2023).
|t Sci. Adv.
|v 9
|y 2023
999 C 5 |a 10.1039/C9CP02908G
|9 -- missing cx lookup --
|1 K Gope
|p 13730 -
|2 Crossref
|u Gope, K., Luzon, I. & Strasser, D. N–NO & NN–O bond cleavage dynamics in two- and three-body Coulomb explosion of the N2O2+ dication. Phys. Chem. Chem. Phys. 21, 13730–13737 (2019).
|t Phys. Chem. Chem. Phys.
|v 21
|y 2019
999 C 5 |a 10.1021/acs.jpclett.9b00576
|9 -- missing cx lookup --
|1 I Luzon
|p 1361 -
|2 Crossref
|u Luzon, I., Livshits, E., Gope, K., Baer, R. & Strasser, D. Making sense of coulomb explosion imaging. J. Phys. Chem. Lett. 10, 1361–1367 (2019).
|t J. Phys. Chem. Lett.
|v 10
|y 2019
999 C 5 |a 10.1126/science.244.4903.426
|9 -- missing cx lookup --
|1 Z Vager
|p 426 -
|2 Crossref
|u Vager, Z., Naaman, R. & Kanter, E. P. Coulomb explosion imaging of small molecules. Science 244, 426–431 (1989).
|t Science
|v 244
|y 1989
999 C 5 |a 10.1103/PhysRevA.106.023109
|1 P Song
|9 -- missing cx lookup --
|2 Crossref
|u Song, P. et al. Dissociative multiple ionization of carbon dioxide dimers in intense femtosecond laser fields. Phys. Rev. A 106, 023109 (2022).
|t Phys. Rev. A
|v 106
|y 2022
999 C 5 |a 10.1038/s42004-020-0294-1
|9 -- missing cx lookup --
|1 E Livshits
|p 49 -
|2 Crossref
|u Livshits, E., Luzon, I., Gope, K., Baer, R. & Strasser, D. Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Commun. Chem. 3, 49 (2020).
|t Commun. Chem.
|v 3
|y 2020
999 C 5 |a 10.1107/S1600577519002236
|9 -- missing cx lookup --
|1 G Schmid
|p 854 -
|2 Crossref
|u Schmid, G. et al. Reaction microscope endstation at FLASH2. J. Synchrotron Radiat. 26, 854–867 (2019).
|t J. Synchrotron Radiat.
|v 26
|y 2019
999 C 5 |a 10.1063/5.0098531
|9 -- missing cx lookup --
|1 DM Bittner
|p 074309 -
|2 Crossref
|u Bittner, D. M., Gope, K., Livshits, E., Baer, R. & Strasser, D. Sequential and concerted C-C and C-O bond dissociation in the Coulomb explosion of 2-propanol. J. Chem. Phys. 157, 074309 (2022).
|t J. Chem. Phys.
|v 157
|y 2022
999 C 5 |a 10.1039/D2CP03632K
|9 -- missing cx lookup --
|1 K Gope
|p 6979 -
|2 Crossref
|u Gope, K., Bittner, D. M. & Strasser, D. Sequential mechanism in H 3 + formation dynamics on the ethanol dication. Phys. Chem. Chem. Phys. 25, 6979–6986 (2023).
|t Phys. Chem. Chem. Phys.
|v 25
|y 2023
999 C 5 |a 10.1021/acs.jpclett.0c02445
|9 -- missing cx lookup --
|1 K Gope
|p 8108 -
|2 Crossref
|u Gope, K., Livshits, E., Bittner, D. M., Baer, R. & Strasser, D. Absence of triplets in single-photon double ionization of methanol. J. Phys. Chem. Lett. 11, 8108–8113 (2020).
|t J. Phys. Chem. Lett.
|v 11
|y 2020
999 C 5 |a 10.1063/5.0028812
|9 -- missing cx lookup --
|2 Crossref
|u Bittner, D. M., Gope, K. & Strasser, D. Time-resolved dissociative ionization and double photoionization of CO2. J. Chem. Phys. 153, (2020).
999 C 5 |a 10.1039/b617919c
|9 -- missing cx lookup --
|1 E Livshits
|p 2932 -
|2 Crossref
|u Livshits, E. & Baer, R. A well-tempered density functional theory of electrons in molecules. Phys. Chem. Chem. Phys. 9, 2932 (2007).
|t Phys. Chem. Chem. Phys.
|v 9
|y 2007
999 C 5 |a 10.1146/annurev.physchem.012809.103321
|9 -- missing cx lookup --
|1 R Baer
|p 85 -
|2 Crossref
|u Baer, R., Livshits, E. & Salzner, U. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61, 85–109 (2010).
|t Annu. Rev. Phys. Chem.
|v 61
|y 2010
999 C 5 |a 10.1080/00268976.2014.952696
|9 -- missing cx lookup --
|1 Y Shao
|p 184 -
|2 Crossref
|u Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).
|t Mol. Phys.
|v 113
|y 2015
999 C 5 |a 10.1021/acs.jpclett.9b00981
|9 -- missing cx lookup --
|1 H-H Teh
|p 3426 -
|2 Crossref
|u Teh, H.-H. & Subotnik, J. E. The simplest possible approach for simulating S 0 – S 1 conical intersections with DFT/TDDFT: Adding one doubly excited configuration. J. Phys. Chem. Lett. 10, 3426–3432 (2019).
|t J. Phys. Chem. Lett.
|v 10
|y 2019
999 C 5 |a 10.1063/1.459170
|9 -- missing cx lookup --
|1 JC Tully
|p 1061 -
|2 Crossref
|u Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).
|t J. Chem. Phys.
|v 93
|y 1990
999 C 5 |a 10.1126/science.1194237
|9 -- missing cx lookup --
|1 R Vaidhyanathan
|p 650 -
|2 Crossref
|u Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).
|t Science
|v 330
|y 2010
999 C 5 |a 10.1021/ja105211w
|9 -- missing cx lookup --
|1 H Kim
|p 12200 -
|2 Crossref
|u Kim, H. et al. Highly selective carbon dioxide sorption in an organic molecular porous material. J. Am. Chem. Soc. 132, 12200–12202 (2010).
|t J. Am. Chem. Soc.
|v 132
|y 2010
999 C 5 |a 10.1039/C8CP07068G
|9 -- missing cx lookup --
|1 Y Nakashima
|p 3083 -
|2 Crossref
|u Nakashima, Y. et al. Visible photodissociation of the CO2 dimer cation: Fast and slow dissociation dynamics in the excited state. Phys. Chem. Chem. Phys. 21, 3083–3091 (2019).
|t Phys. Chem. Chem. Phys.
|v 21
|y 2019
999 C 5 |a 10.1063/5.0045402
|9 -- missing cx lookup --
|2 Crossref
|u Kanno, M., Maeda, T., Nakashima, Y., Misaizu, F. & Kono, H. A fast and robust trajectory surface hopping method: Application to the intermolecular photodissociation of a carbon dioxide dimer cation (CO2)2+. J. Chem. Phys. 154, 164108 (2021).
999 C 5 |a 10.1126/science.adk1950
|9 -- missing cx lookup --
|1 A Bogot
|p 285 -
|2 Crossref
|u Bogot, A. et al. The mutual neutralization of hydronium and hydroxide. Science 383, 285–289 (2024).
|t Science
|v 383
|y 2024
999 C 5 |a 10.1088/1742-6596/1412/12/122028
|9 -- missing cx lookup --
|1 A Shahi
|p 122028 -
|2 Crossref
|u Shahi, A. et al. Hybrid Electrostatic Ion Beam Trap (HEIBT): design and simulation of ion-ion and ion-neutral low-energy collisions and ion-laser photoreactions. J. Phys. Conf. Ser. 1412, 122028 (2020).
|t J. Phys. Conf. Ser.
|v 1412
|y 2020
999 C 5 |a 10.1039/D3CP03633B
|9 -- missing cx lookup --
|1 A Bogot
|p 25701 -
|2 Crossref
|u Bogot, A., Lioubashevski, O., Heber, O., Zajfman, D. & Strasser, D. Simultaneous electrostatic trapping of merged cation & anion beams. Phys. Chem. Chem. Phys. 25, 25701–25710 (2023).
|t Phys. Chem. Chem. Phys.
|v 25
|y 2023
999 C 5 |a 10.1038/s41467-021-26899-0
|1 M Gatchell
|9 -- missing cx lookup --
|2 Crossref
|u Gatchell, M. et al. Survival of polycyclic aromatic hydrocarbon knockout fragments in the interstellar medium. Nat. Commun. 12, 6646 (2021).
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |a 10.1126/science.1187191
|9 -- missing cx lookup --
|1 H Kreckel
|p 69 -
|2 Crossref
|u Kreckel, H. et al. Experimental Results for H 2 Formation from H − and H and Implications for First Star Formation. Science 329, 69–71 (2010).
|t Science
|v 329
|y 2010
999 C 5 |a 10.1002/wcms.1331
|9 -- missing cx lookup --
|1 T Shiozaki
|p 1 -
|2 Crossref
|u Shiozaki, T. BAGEL: Brilliantly advanced general electronic‐structure library. WIREs Comput. Mol. Sci. 8, 1–7 (2018).
|t WIREs Comput. Mol. Sci.
|v 8
|y 2018
999 C 5 |a 10.1016/S0009-2614(98)00252-8
|9 -- missing cx lookup --
|1 J Finley
|p 299 -
|2 Crossref
|u Finley, J., Malmqvist, P.-Å., Roos, B. O. & Serrano-Andrés, L. The multi-state CASPT2 method. Chem. Phys. Lett. 288, 299–306 (1998).
|t Chem. Phys. Lett.
|v 288
|y 1998
999 C 5 |a 10.1021/acs.jctc.6b00572
|9 -- missing cx lookup --
|1 B Vlaisavljevich
|p 3781 -
|2 Crossref
|u Vlaisavljevich, B. & Shiozaki, T. Nuclear energy gradients for internally contracted complete active space second-order perturbation theory: Multistate extensions. J. Chem. Theory Comput. 12, 3781–3787 (2016).
|t J. Chem. Theory Comput.
|v 12
|y 2016
999 C 5 |a 10.1002/wcms.1158
|9 -- missing cx lookup --
|1 M Barbatti
|p 26 -
|2 Crossref
|u Barbatti, M. et al. Newton‐X: a surface‐hopping program for nonadiabatic molecular dynamics. WIREs Comput. Mol. Sci. 4, 26–33 (2014).
|t WIREs Comput. Mol. Sci.
|v 4
|y 2014
999 C 5 |a 10.1002/wcms.1158
|9 -- missing cx lookup --
|2 Crossref
|u Barbatti, M. et al. NEWTON-X: A surface‐hopping program for nonadiabatic molecular dynamics. WIREs Comput. Mol. Sci. 4, 26–33 (2014)
999 C 5 |a 10.1021/acs.jctc.7b00559
|9 -- missing cx lookup --
|1 JW Park
|p 3676 -
|2 Crossref
|u Park, J. W. & Shiozaki, T. On-the-Fly CASPT2 surface-hopping dynamics. J. Chem. Theory Comput. 13, 3676–3683 (2017).
|t J. Chem. Theory Comput.
|v 13
|y 2017
999 C 5 |a 10.1021/acs.jpclett.5b01891
|9 -- missing cx lookup --
|1 S Gozem
|p 4532 -
|2 Crossref
|u Gozem, S. et al. Photoelectron wave function in photoionization: Plane wave or coulomb wave? J. Phys. Chem. Lett. 6, 4532–4540 (2015).
|t J. Phys. Chem. Lett.
|v 6
|y 2015
999 C 5 |a 10.1002/wcms.1546
|9 -- missing cx lookup --
|1 S Gozem
|p 1 -
|2 Crossref
|u Gozem, S. & Krylov, A. I. The ezSpectra suite: An easy‐to‐use toolkit for spectroscopy modeling. WIREs Comput. Mol. Sci. 12, 1–22 (2022).
|t WIREs Comput. Mol. Sci.
|v 12
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21