000612518 001__ 612518
000612518 005__ 20250715170928.0
000612518 0247_ $$2doi$$a10.1038/s41467-024-50759-2
000612518 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05371
000612518 0247_ $$2altmetric$$aaltmetric:165712592
000612518 0247_ $$2pmid$$apmid:39060261
000612518 0247_ $$2WOS$$aWOS:001279103300003
000612518 0247_ $$2openalex$$aopenalex:W4401056128
000612518 037__ $$aPUBDB-2024-05371
000612518 041__ $$aEnglish
000612518 082__ $$a500
000612518 1001_ $$00000-0002-3088-6290$$aLivshits, Ester$$b0
000612518 245__ $$aSymmetry-breaking dynamics of a photoionized carbon dioxide dimer
000612518 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000612518 3367_ $$2DRIVER$$aarticle
000612518 3367_ $$2DataCite$$aOutput Types/Journal article
000612518 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1722429841_2814414
000612518 3367_ $$2BibTeX$$aARTICLE
000612518 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000612518 3367_ $$00$$2EndNote$$aJournal Article
000612518 520__ $$aPhotoionization can initiate structural reorganization of molecular matter and drive formation of new chemical bonds. Here, we used time-resolved extreme ultraviolet (EUV) pump – EUV probe Coulomb explosion imaging of carbon dioxide dimer ion $(CO_2)_2^+$dynamics, that combined with ab initio molecular dynamics simulations, revealed unexpected asymmetric structural rearrangement. We show that ionization by the pump pulse induces rearrangement from the slipped-parallel (C$_{2h}$) geometry of the neutral $CO_2$ dimer towards a T-shaped (C$_{2v}$) structure on the ~100 fs timescale, although the most stable slipped-parallel (C$_{2h}$) structure of the ionic dimer. Moreover, we find that excited states of the ionized $CO_2$ dimer can exhibit formation of a $CO_3$ moiety in the $CO_2O_4^+$ complex that can persist even after a suitably time-delayed second photoionization in a metastable $CO_2O_4^+$ dication. Our results suggest that charge asymmetry plays an important role in the ionization-induced dynamics in such dimers that are present in $C_2$ rich environments. 
000612518 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000612518 536__ $$0G:(DE-HGF)POF4-6G2$$a6G2 - FLASH (DESY) (POF4-6G2)$$cPOF4-6G2$$fPOF IV$$x1
000612518 536__ $$0G:(DE-H253)F-20191536$$aFS-Proposal: F-20191536 (F-20191536)$$cF-20191536$$x2
000612518 542__ $$2Crossref$$i2024-07-27$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000612518 542__ $$2Crossref$$i2024-07-27$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0
000612518 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000612518 693__ $$0EXP:(DE-H253)F-FL26-20150901$$1EXP:(DE-H253)FLASHII-20150901$$6EXP:(DE-H253)F-FL26-20150901$$aFLASH2$$fFLASH2 Beamline FL26$$x0
000612518 7001_ $$0P:(DE-H253)PIP1090915$$aBittner, Dror M.$$b1
000612518 7001_ $$00000-0001-7756-286X$$aTrost, Florian$$b2
000612518 7001_ $$00000-0002-5245-8377$$aMeister, Severin$$b3
000612518 7001_ $$00000-0003-1728-7979$$aLindenblatt, Hannes$$b4
000612518 7001_ $$0P:(DE-H253)PIP1001400$$aTreusch, Rolf$$b5
000612518 7001_ $$00000-0001-6795-5010$$aGope, Krishnendu$$b6
000612518 7001_ $$00000-0002-5312-3747$$aPfeifer, Thomas$$b7
000612518 7001_ $$00000-0001-8432-1925$$aBaer, Roi$$b8$$eCorresponding author
000612518 7001_ $$0P:(DE-H253)PIP1007317$$aMoshammer, Robert$$b9
000612518 7001_ $$00000-0002-9000-3816$$aStrasser, Daniel$$b10$$eCorresponding author
000612518 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-50759-2$$bSpringer Science and Business Media LLC$$d2024-07-27$$n1$$p6322$$tNature Communications$$v15$$x2041-1723$$y2024
000612518 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-50759-2$$gVol. 15, no. 1, p. 6322$$n1$$p6322$$tNature Communications$$v15$$x2041-1723$$y2024
000612518 8564_ $$uhttps://bib-pubdb1.desy.de/record/612518/files/s41467-024-50759-2-1.pdf$$yOpenAccess
000612518 8564_ $$uhttps://bib-pubdb1.desy.de/record/612518/files/s41467-024-50759-2-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000612518 909CO $$ooai:bib-pubdb1.desy.de:612518$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000612518 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090915$$aExternal Institute$$b1$$kExtern
000612518 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001400$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000612518 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007317$$aExternal Institute$$b9$$kExtern
000612518 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000612518 9131_ $$0G:(DE-HGF)POF4-6G2$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFLASH (DESY)$$x1
000612518 9141_ $$y2024
000612518 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000612518 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000612518 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000612518 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000612518 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000612518 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000612518 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000612518 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000612518 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000612518 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000612518 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000612518 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000612518 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000612518 9201_ $$0I:(DE-H253)FS-FLASH-O-20160930$$kFS-FLASH-O$$lFLASH Wissenschaftlicher Nutzerbetrieb$$x1
000612518 980__ $$ajournal
000612518 980__ $$aVDB
000612518 980__ $$aUNRESTRICTED
000612518 980__ $$aI:(DE-H253)HAS-User-20120731
000612518 980__ $$aI:(DE-H253)FS-FLASH-O-20160930
000612518 9801_ $$aFullTexts
000612518 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ange.202218770$$uLicht, O. et al. Peptide bond formation in the protonated serine dimer following vacuum UV photon‐induced excitation. Angew. Chemie 135, 202218770 (2023).
000612518 999C5 $$1T Stein$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1616464114$$pE4125 -$$tProc. Natl Acad. Sci.$$uStein, T. et al. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation. Proc. Natl Acad. Sci. 114, E4125–E4133 (2017).$$v114$$y2017
000612518 999C5 $$1J Jose$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2101371118$$p1 -$$tProc. Natl Acad. Sci.$$uJose, J., Zamir, A. & Stein, T. Molecular dynamics reveals formation path of benzonitrile and other molecules in conditions relevant to the interstellar medium. Proc. Natl Acad. Sci. 118, 1–7 (2021).$$v118$$y2021
000612518 999C5 $$1MC Castrovilli$$2Crossref$$9-- missing cx lookup --$$a10.1039/C7CP02233F$$p19807 -$$tPhys. Chem. Chem. Phys.$$uCastrovilli, M. C. et al. Fragmentation of pure and hydrated clusters of 5Br-uracil by low energy carbon ions: observation of hydrated fragments. Phys. Chem. Chem. Phys. 19, 19807–19814 (2017).$$v19$$y2017
000612518 999C5 $$1F Siragusa$$2Crossref$$9-- missing cx lookup --$$a10.1039/D2PY01258H$$p1164 -$$tPolym. Chem.$$uSiragusa, F., Detrembleur, C. & Grignard, B. The advent of recyclable CO2 -based polycarbonates. Polym. Chem. 14, 1164–1183 (2023).$$v14$$y2023
000612518 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ange.202116066$$uNgassam Tounzoua, C., Grignard, B. & Detrembleur, C. Exovinylene cyclic carbonates: Multifaceted CO2 ‐based building blocks for modern chemistry and polymer science. Angew. Chemie 134, e202116066 (2022).
000612518 999C5 $$1M Dehghany$$2Crossref$$9-- missing cx lookup --$$a10.1080/00268976.2010.496742$$p2195 -$$tMol. Phys.$$uDehghany, M., McKellar, A. R. W., Afshari, M. & Moazzen-Ahmadi, N. High-resolution infrared spectroscopy of carbon dioxide dimers, trimers, and larger clusters. Mol. Phys. 108, 2195–2205 (2010).$$v108$$y2010
000612518 999C5 $$1JD McMahon$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3653230$$p154309 -$$tJ. Chem. Phys.$$uMcMahon, J. D. & Lane, J. R. Explicit correlation and basis set superposition error: The structure and energy of carbon dioxide dimer. J. Chem. Phys. 135, 154309 (2011).$$v135$$y2011
000612518 999C5 $$1AJ Illies$$2Crossref$$9-- missing cx lookup --$$a10.1021/j100297a007$$p3489 -$$tJ. Phys. Chem.$$uIllies, A. J., McKee, M. L. & Schlegel, H. B. Ab initio study of the carbon dioxide dimer and the carbon dioxide ion complexes [(CO2)2+ and (CO2)3+]. J. Phys. Chem. 91, 3489–3494 (1987).$$v91$$y1987
000612518 999C5 $$1J Roithová$$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.200704286$$p9316 -$$tAngew Chem. Int. Ed.$$uRoithová, J., Ricketts, C. L., Schröder, D. & Price, S. D. Bond formation with maintenance of twofold charge: Generation of C2O32+ in the reaction of CO22+ with CO2. Angew Chem. Int. Ed. 46, 9316–9319 (2007).$$v46$$y2007
000612518 999C5 $$1F Feixas$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp1020559$$p6681 -$$tJ. Phys. Chem. A$$uFeixas, F. et al. Bonding analysis of the [C2O4] 2+ intermediate formed in the reaction of CO22+ with neutral CO2. J. Phys. Chem. A 114, 6681–6688 (2010).$$v114$$y2010
000612518 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2022JE007456$$uGraham, R. J., Lichtenberg, T. & Pierrehumbert, R. T. CO2 ocean bistability on terrestrial exoplanets. J. Geophys. Res. Planets 127, e2022JE007456 (2022).
000612518 999C5 $$1K Fox$$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-4073(88)90111-2$$p177 -$$tJ. Quant. Spectrosc. Radiat. Transf.$$uFox, K. & Kim, S. J. Spectra of van der Waals complexes (dimers) with applications to planetary atmospheres. J. Quant. Spectrosc. Radiat. Transf. 40, 177–184 (1988).$$v40$$y1988
000612518 999C5 $$1K Schnorr$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.adg7864$$peadg7864 -$$tSci. Adv.$$uSchnorr, K. et al. Direct tracking of ultrafast proton transfer in water dimers. Sci. Adv. 9, eadg7864 (2023).$$v9$$y2023
000612518 999C5 $$1K Gope$$2Crossref$$9-- missing cx lookup --$$a10.1039/C9CP02908G$$p13730 -$$tPhys. Chem. Chem. Phys.$$uGope, K., Luzon, I. & Strasser, D. N–NO & NN–O bond cleavage dynamics in two- and three-body Coulomb explosion of the N2O2+ dication. Phys. Chem. Chem. Phys. 21, 13730–13737 (2019).$$v21$$y2019
000612518 999C5 $$1I Luzon$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.9b00576$$p1361 -$$tJ. Phys. Chem. Lett.$$uLuzon, I., Livshits, E., Gope, K., Baer, R. & Strasser, D. Making sense of coulomb explosion imaging. J. Phys. Chem. Lett. 10, 1361–1367 (2019).$$v10$$y2019
000612518 999C5 $$1Z Vager$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.244.4903.426$$p426 -$$tScience$$uVager, Z., Naaman, R. & Kanter, E. P. Coulomb explosion imaging of small molecules. Science 244, 426–431 (1989).$$v244$$y1989
000612518 999C5 $$1P Song$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.106.023109$$tPhys. Rev. A$$uSong, P. et al. Dissociative multiple ionization of carbon dioxide dimers in intense femtosecond laser fields. Phys. Rev. A 106, 023109 (2022).$$v106$$y2022
000612518 999C5 $$1E Livshits$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42004-020-0294-1$$p49 -$$tCommun. Chem.$$uLivshits, E., Luzon, I., Gope, K., Baer, R. & Strasser, D. Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Commun. Chem. 3, 49 (2020).$$v3$$y2020
000612518 999C5 $$1G Schmid$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577519002236$$p854 -$$tJ. Synchrotron Radiat.$$uSchmid, G. et al. Reaction microscope endstation at FLASH2. J. Synchrotron Radiat. 26, 854–867 (2019).$$v26$$y2019
000612518 999C5 $$1DM Bittner$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0098531$$p074309 -$$tJ. Chem. Phys.$$uBittner, D. M., Gope, K., Livshits, E., Baer, R. & Strasser, D. Sequential and concerted C-C and C-O bond dissociation in the Coulomb explosion of 2-propanol. J. Chem. Phys. 157, 074309 (2022).$$v157$$y2022
000612518 999C5 $$1K Gope$$2Crossref$$9-- missing cx lookup --$$a10.1039/D2CP03632K$$p6979 -$$tPhys. Chem. Chem. Phys.$$uGope, K., Bittner, D. M. & Strasser, D. Sequential mechanism in H 3 + formation dynamics on the ethanol dication. Phys. Chem. Chem. Phys. 25, 6979–6986 (2023).$$v25$$y2023
000612518 999C5 $$1K Gope$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.0c02445$$p8108 -$$tJ. Phys. Chem. Lett.$$uGope, K., Livshits, E., Bittner, D. M., Baer, R. & Strasser, D. Absence of triplets in single-photon double ionization of methanol. J. Phys. Chem. Lett. 11, 8108–8113 (2020).$$v11$$y2020
000612518 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0028812$$uBittner, D. M., Gope, K. & Strasser, D. Time-resolved dissociative ionization and double photoionization of CO2. J. Chem. Phys. 153, (2020).
000612518 999C5 $$1E Livshits$$2Crossref$$9-- missing cx lookup --$$a10.1039/b617919c$$p2932 -$$tPhys. Chem. Chem. Phys.$$uLivshits, E. & Baer, R. A well-tempered density functional theory of electrons in molecules. Phys. Chem. Chem. Phys. 9, 2932 (2007).$$v9$$y2007
000612518 999C5 $$1R Baer$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.physchem.012809.103321$$p85 -$$tAnnu. Rev. Phys. Chem.$$uBaer, R., Livshits, E. & Salzner, U. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61, 85–109 (2010).$$v61$$y2010
000612518 999C5 $$1Y Shao$$2Crossref$$9-- missing cx lookup --$$a10.1080/00268976.2014.952696$$p184 -$$tMol. Phys.$$uShao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).$$v113$$y2015
000612518 999C5 $$1H-H Teh$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.9b00981$$p3426 -$$tJ. Phys. Chem. Lett.$$uTeh, H.-H. & Subotnik, J. E. The simplest possible approach for simulating S 0 – S 1 conical intersections with DFT/TDDFT: Adding one doubly excited configuration. J. Phys. Chem. Lett. 10, 3426–3432 (2019).$$v10$$y2019
000612518 999C5 $$1JC Tully$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.459170$$p1061 -$$tJ. Chem. Phys.$$uTully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).$$v93$$y1990
000612518 999C5 $$1R Vaidhyanathan$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1194237$$p650 -$$tScience$$uVaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).$$v330$$y2010
000612518 999C5 $$1H Kim$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja105211w$$p12200 -$$tJ. Am. Chem. Soc.$$uKim, H. et al. Highly selective carbon dioxide sorption in an organic molecular porous material. J. Am. Chem. Soc. 132, 12200–12202 (2010).$$v132$$y2010
000612518 999C5 $$1Y Nakashima$$2Crossref$$9-- missing cx lookup --$$a10.1039/C8CP07068G$$p3083 -$$tPhys. Chem. Chem. Phys.$$uNakashima, Y. et al. Visible photodissociation of the CO2 dimer cation: Fast and slow dissociation dynamics in the excited state. Phys. Chem. Chem. Phys. 21, 3083–3091 (2019).$$v21$$y2019
000612518 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0045402$$uKanno, M., Maeda, T., Nakashima, Y., Misaizu, F. & Kono, H. A fast and robust trajectory surface hopping method: Application to the intermolecular photodissociation of a carbon dioxide dimer cation (CO2)2+. J. Chem. Phys. 154, 164108 (2021).
000612518 999C5 $$1A Bogot$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.adk1950$$p285 -$$tScience$$uBogot, A. et al. The mutual neutralization of hydronium and hydroxide. Science 383, 285–289 (2024).$$v383$$y2024
000612518 999C5 $$1A Shahi$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/1412/12/122028$$p122028 -$$tJ. Phys. Conf. Ser.$$uShahi, A. et al. Hybrid Electrostatic Ion Beam Trap (HEIBT): design and simulation of ion-ion and ion-neutral low-energy collisions and ion-laser photoreactions. J. Phys. Conf. Ser. 1412, 122028 (2020).$$v1412$$y2020
000612518 999C5 $$1A Bogot$$2Crossref$$9-- missing cx lookup --$$a10.1039/D3CP03633B$$p25701 -$$tPhys. Chem. Chem. Phys.$$uBogot, A., Lioubashevski, O., Heber, O., Zajfman, D. & Strasser, D. Simultaneous electrostatic trapping of merged cation & anion beams. Phys. Chem. Chem. Phys. 25, 25701–25710 (2023).$$v25$$y2023
000612518 999C5 $$1M Gatchell$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-26899-0$$tNat. Commun.$$uGatchell, M. et al. Survival of polycyclic aromatic hydrocarbon knockout fragments in the interstellar medium. Nat. Commun. 12, 6646 (2021).$$v12$$y2021
000612518 999C5 $$1H Kreckel$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1187191$$p69 -$$tScience$$uKreckel, H. et al. Experimental Results for H 2 Formation from H − and H and Implications for First Star Formation. Science 329, 69–71 (2010).$$v329$$y2010
000612518 999C5 $$1T Shiozaki$$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1331$$p1 -$$tWIREs Comput. Mol. Sci.$$uShiozaki, T. BAGEL: Brilliantly advanced general electronic‐structure library. WIREs Comput. Mol. Sci. 8, 1–7 (2018).$$v8$$y2018
000612518 999C5 $$1J Finley$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0009-2614(98)00252-8$$p299 -$$tChem. Phys. Lett.$$uFinley, J., Malmqvist, P.-Å., Roos, B. O. & Serrano-Andrés, L. The multi-state CASPT2 method. Chem. Phys. Lett. 288, 299–306 (1998).$$v288$$y1998
000612518 999C5 $$1B Vlaisavljevich$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.6b00572$$p3781 -$$tJ. Chem. Theory Comput.$$uVlaisavljevich, B. & Shiozaki, T. Nuclear energy gradients for internally contracted complete active space second-order perturbation theory: Multistate extensions. J. Chem. Theory Comput. 12, 3781–3787 (2016).$$v12$$y2016
000612518 999C5 $$1M Barbatti$$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1158$$p26 -$$tWIREs Comput. Mol. Sci.$$uBarbatti, M. et al. Newton‐X: a surface‐hopping program for nonadiabatic molecular dynamics. WIREs Comput. Mol. Sci. 4, 26–33 (2014).$$v4$$y2014
000612518 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1158$$uBarbatti, M. et al. NEWTON-X: A surface‐hopping program for nonadiabatic molecular dynamics. WIREs Comput. Mol. Sci. 4, 26–33 (2014)
000612518 999C5 $$1JW Park$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.7b00559$$p3676 -$$tJ. Chem. Theory Comput.$$uPark, J. W. & Shiozaki, T. On-the-Fly CASPT2 surface-hopping dynamics. J. Chem. Theory Comput. 13, 3676–3683 (2017).$$v13$$y2017
000612518 999C5 $$1S Gozem$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.5b01891$$p4532 -$$tJ. Phys. Chem. Lett.$$uGozem, S. et al. Photoelectron wave function in photoionization: Plane wave or coulomb wave? J. Phys. Chem. Lett. 6, 4532–4540 (2015).$$v6$$y2015
000612518 999C5 $$1S Gozem$$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1546$$p1 -$$tWIREs Comput. Mol. Sci.$$uGozem, S. & Krylov, A. I. The ezSpectra suite: An easy‐to‐use toolkit for spectroscopy modeling. WIREs Comput. Mol. Sci. 12, 1–22 (2022).$$v12$$y2022