000612471 001__ 612471
000612471 005__ 20250715171038.0
000612471 0247_ $$2doi$$a10.1038/s42005-024-01699-2
000612471 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05331
000612471 0247_ $$2altmetric$$aaltmetric:157284632
000612471 0247_ $$2WOS$$aWOS:001266045300001
000612471 0247_ $$2openalex$$aopenalex:W4400496445
000612471 037__ $$aPUBDB-2024-05331
000612471 041__ $$aEnglish
000612471 082__ $$a530
000612471 1001_ $$0P:(DE-H253)PIP1089728$$aKüspert, J.$$b0$$eCorresponding author
000612471 245__ $$aEngineering phase competition between stripe order and superconductivity in La$_{1.88}$Sr$_{0.12}$CuO$_4$
000612471 260__ $$aLondon$$bSpringer Nature$$c2024
000612471 3367_ $$2DRIVER$$aarticle
000612471 3367_ $$2DataCite$$aOutput Types/Journal article
000612471 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752137317_3597533
000612471 3367_ $$2BibTeX$$aARTICLE
000612471 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000612471 3367_ $$00$$2EndNote$$aJournal Article
000612471 520__ $$aUnconventional superconductivity often couples to other electronic orders in a cooperative or competing fashion. Identifying external stimuli that tune between these two limits is of fundamental interest. Here, we show that strain perpendicular to the copper-oxide planes couples directly to the competing interaction between charge stripe order and superconductivity in La$_{1.88}$Sr$_{0.12}$CuO$_4$ (LSCO). Compressive c-axis pressure amplifies stripe order within the superconducting state, while having no impact on the normal state. By contrast, strain dramatically diminishes the magnetic field enhancement of stripe order in the superconducting state. These results suggest that c-axis strain acts as tuning parameter of the competing interaction between charge stripe order and superconductivity. This interpretation implies a uniaxial pressure-induced ground state in which the competition between charge order and superconductivity is reduced.
000612471 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000612471 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000612471 536__ $$0G:(EU-Grant)730872$$aCALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)$$c730872$$fH2020-INFRAIA-2016-1$$x2
000612471 542__ $$2Crossref$$i2024-07-10$$uhttps://creativecommons.org/licenses/by/4.0
000612471 542__ $$2Crossref$$i2024-07-10$$uhttps://creativecommons.org/licenses/by/4.0
000612471 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000612471 693__ $$0EXP:(DE-H253)P-P21.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.1-20150101$$aPETRA III$$fPETRA Beamline P21.1$$x0
000612471 7001_ $$00000-0003-3431-6102$$aBiało, I.$$b1
000612471 7001_ $$0P:(DE-H253)PIP1090445$$aFrison, R.$$b2
000612471 7001_ $$0P:(DE-H253)PIP1097086$$aMorawietz, A.$$b3
000612471 7001_ $$0P:(DE-H253)PIP1093075$$aMartinelli, L.$$b4
000612471 7001_ $$aChoi, J.$$b5
000612471 7001_ $$0P:(DE-H253)PIP1081353$$aBucher, D.$$b6
000612471 7001_ $$0P:(DE-H253)PIP1025988$$aIvashko, O.$$b7
000612471 7001_ $$0P:(DE-H253)PIP1001164$$av Zimmermann, M.$$b8
000612471 7001_ $$aChristensen, N. B.$$b9
000612471 7001_ $$0P:(DE-H253)PIP1087690$$aMazzone, D. G.$$b10
000612471 7001_ $$0P:(DE-H253)PIP1012665$$aSimutis, G.$$b11
000612471 7001_ $$00000-0002-2495-3960$$aTurrini, A. A.$$b12
000612471 7001_ $$0P:(DE-H253)PIP1105420$$aThomarat, L.$$b13
000612471 7001_ $$00000-0002-9277-9060$$aTam, D. W.$$b14
000612471 7001_ $$0P:(DE-H253)PIP1083807$$aJanoschek, M.$$b15
000612471 7001_ $$00000-0001-5065-6823$$aKurosawa, T.$$b16
000612471 7001_ $$0P:(DE-HGF)0$$aMomono, N.$$b17
000612471 7001_ $$0P:(DE-HGF)0$$aOda, M.$$b18
000612471 7001_ $$0P:(DE-H253)PIP1087270$$aWang, Qisi$$b19$$eCorresponding author
000612471 7001_ $$0P:(DE-H253)PIP1108769$$aChang, J.$$b20
000612471 77318 $$2Crossref$$3journal-article$$a10.1038/s42005-024-01699-2$$bSpringer Science and Business Media LLC$$d2024-07-10$$n1$$p225$$tCommunications Physics$$v7$$x2399-3650$$y2024
000612471 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-024-01699-2$$gVol. 7, no. 1, p. 225$$n1$$p225$$tCommunications Physics$$v7$$x2399-3650$$y2024
000612471 8564_ $$uhttps://bib-pubdb1.desy.de/record/612471/files/s42005-024-01699-2.pdf$$yOpenAccess
000612471 8564_ $$uhttps://bib-pubdb1.desy.de/record/612471/files/s42005-024-01699-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000612471 909CO $$ooai:bib-pubdb1.desy.de:612471$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089728$$aExternal Institute$$b0$$kExtern
000612471 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1090445$$aEuropean Molecular Biology Laboratory$$b2$$kEMBL
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090445$$aExternal Institute$$b2$$kExtern
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097086$$aExternal Institute$$b3$$kExtern
000612471 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1093075$$aEuropean XFEL$$b4$$kXFEL.EU
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093075$$aExternal Institute$$b4$$kExtern
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081353$$aExternal Institute$$b6$$kExtern
000612471 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1081353$$aEuropean XFEL$$b6$$kXFEL.EU
000612471 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025988$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025988$$aExternal Institute$$b7$$kExtern
000612471 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001164$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000612471 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1087690$$aEuropean XFEL$$b10$$kXFEL.EU
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087690$$aExternal Institute$$b10$$kExtern
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012665$$aExternal Institute$$b11$$kExtern
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105420$$aExternal Institute$$b13$$kExtern
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083807$$aExternal Institute$$b15$$kExtern
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087270$$aExternal Institute$$b19$$kExtern
000612471 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1108769$$aExternal Institute$$b20$$kExtern
000612471 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000612471 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000612471 9141_ $$y2024
000612471 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000612471 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000612471 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000612471 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000612471 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000612471 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000612471 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:49Z
000612471 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:49Z
000612471 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:49Z
000612471 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000612471 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000612471 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000612471 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000612471 9201_ $$0I:(DE-H253)XFEL_DO_TS-20210408$$kXFEL_DO_TS$$lTechnical services$$x2
000612471 980__ $$ajournal
000612471 980__ $$aVDB
000612471 980__ $$aI:(DE-H253)HAS-User-20120731
000612471 980__ $$aI:(DE-H253)FS-PET-D-20190712
000612471 980__ $$aI:(DE-H253)XFEL_DO_TS-20210408
000612471 980__ $$aUNRESTRICTED
000612471 9801_ $$aFullTexts
000612471 999C5 $$1D Gibbs$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.37.562$$p562 -$$tPhys. Rev. B$$uGibbs, D., Mohanty, K. M. & Bohr, J. High-resolution x-ray-scattering study of charge-density-wave modulation in chromium. Phys. Rev. B 37, 562–564 (1988).$$v37$$y1988
000612471 999C5 $$1XW Jiang$$2Crossref$$uJiang, X. W. & Fishman, R. S. Coupled spin- and charge-density waves in chromium alloys. J. Phys.: Condens. Matter 9, 3417 (1997).$$y1997
000612471 999C5 $$1Y Hu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-28104-2$$tNat. Commun.$$uHu, Y. et al. Real-space observation of incommensurate spin density wave and coexisting charge density wave on Cr (001) surface. Nat. Commun. 13, 445 (2022).$$v13$$y2022
000612471 999C5 $$1JM Tranquada$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.73.1003$$p1003 -$$tPhys. Rev. Lett.$$uTranquada, J. M., Buttrey, D. J., Sachan, V. & Lorenzo, J. E. Simultaneous ordering of holes and spins in La2NiO4.125. Phys. Rev. Lett. 73, 1003–1006 (1994).$$v73$$y1994
000612471 999C5 $$1JM Tranquada$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.7489$$p7489 -$$tPhys. Rev. B$$uTranquada, J. M. et al. Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4. Phys. Rev. B 54, 7489–7499 (1996).$$v54$$y1996
000612471 999C5 $$1M Hücker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.104506$$p104506 -$$tPhys. Rev. B$$uHücker, M. et al. Stripe order in superconducting La2−xBaxCuO4 (0.095 ⩽ x ⩽ 0.155). Phys. Rev. B 83, 104506 (2011).$$v83$$y2011
000612471 999C5 $$1V Thampy$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.100510$$p100510(R) -$$tPhys. Rev. B$$uThampy, V. et al. Rotated stripe order and its competition with superconductivity in La1.88Sr0.12CuO4. Phys. Rev. B 90, 100510(R) (2014).$$v90$$y2014
000612471 999C5 $$1AJ Achkar$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aad1824$$p576 -$$tScience$$uAchkar, A. J. et al. Nematicity in stripe-ordered cuprates probed via resonant x-ray scattering. Science 351, 576–578 (2016).$$v351$$y2016
000612471 999C5 $$1FH Yu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-23928-w$$tNat. Commun.$$uYu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).$$v12$$y2021
000612471 999C5 $$1Y Song$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.127.237001$$p237001 -$$tPhys. Rev. Lett.$$uSong, Y. et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes. Phys. Rev. Lett. 127, 237001 (2021).$$v127$$y2021
000612471 999C5 $$1S Nandi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.057006$$p057006 -$$tPhys. Rev. Lett.$$uNandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting $${{{{{{{\rm{Ba}}}}}}}}{({{{{{{{{\rm{Fe}}}}}}}}}_{1-x}{{{{{{{{\rm{Co}}}}}}}}}_{x})}_{2}{{{{{{{{\rm{As}}}}}}}}}_{2}$$ single crystals. Phys. Rev. Lett. 104, 057006 (2010).$$v104$$y2010
000612471 999C5 $$1D Hu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.101.020507$$p020507 -$$tPhys. Rev. B$$uHu, D. et al. Uniaxial c-axis pressure effects on the underdoped superconductor $${{{{{{{{\rm{BaFe}}}}}}}}}_{2}{({{{{{{{{\rm{As}}}}}}}}}_{0.72}{{{{{{{{\rm{P}}}}}}}}}_{0.28})}_{2}$$. Phys. Rev. B 101, 020507 (2020).$$v101$$y2020
000612471 999C5 $$1JM Allred$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.104513$$p104513 -$$tPhys. Rev. B$$uAllred, J. M. et al. Coincident structural and magnetic order in $${{{{{{{{\rm{bafe}}}}}}}}}_{2}{({{{{{{{{\rm{As}}}}}}}}}_{1-x}{{{{{{{{\rm{P}}}}}}}}}_{x})}_{2}$$ revealed by high-resolution neutron diffraction. Phys. Rev. B 90, 104513 (2014).$$v90$$y2014
000612471 999C5 $$1J Flouquet$$2Crossref$$uFlouquet, J. et al. Trends in heavy fermion matter. J. Phys.: Conf. Ser. 273, 012001 (2011).$$y2011
000612471 999C5 $$1DF Agterberg$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031119-050711$$p231 -$$tAnnu. Rev. Condens. Matter Phys.$$uAgterberg, D. F. et al. The physics of pair-density waves: Cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).$$v11$$y2020
000612471 999C5 $$1Y Wang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.174510$$p174510 -$$tPhys. Rev. B$$uWang, Y. et al. Pair density waves in superconducting vortex halos. Phys. Rev. B 97, 174510 (2018).$$v97$$y2018
000612471 999C5 $$1Z Dai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.174511$$p174511 -$$tPhys. Rev. B$$uDai, Z., Zhang, Y.-H., Senthil, T. & Lee, P. A. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates. Phys. Rev. B 97, 174511 (2018).$$v97$$y2018
000612471 999C5 $$1JM Tranquada$$2Crossref$$9-- missing cx lookup --$$a10.1038/375561a0$$p561 -$$tNat. (Lond.)$$uTranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nat. (Lond.) 375, 561–563 (1995).$$v375$$y1995
000612471 999C5 $$1TP Croft$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.224513$$p224513 -$$tPhys. Rev. B$$uCroft, T. P., Lester, C., Senn, M. S., Bombardi, A. & Hayden, S. M. Charge density wave fluctuations in La2−xSrxCuO4 and their competition with superconductivity. Phys. Rev. B 89, 224513 (2014).$$v89$$y2014
000612471 999C5 $$1E Pavarini$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.047003$$p047003 -$$tPhys. Rev. Lett.$$uPavarini, E., Dasgupta, I., Saha-Dasgupta, T., Jepsen, O. & Andersen, O. K. Band-structure trend in hole-doped cuprates and correlation with $${T}_{c\max }$$. Phys. Rev. Lett. 87, 047003 (2001).$$v87$$y2001
000612471 999C5 $$1F Gugenberger$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.13137$$p13137 -$$tPhys. Rev. B$$uGugenberger, F. et al. Uniaxial pressure dependence of tc from high-resolution dilatometry of untwinned La2−xSrxCuO4 single crystals. Phys. Rev. B 49, 13137–13142 (1994).$$v49$$y1994
000612471 999C5 $$1A Jalekeshov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physc.2022.1354177$$p1354177 -$$tPhys. C: Superconductivity its Appl.$$uJalekeshov, A. & Yavidov, B. On the uniaxial strain (pressure) derivatives of the critical temperature of superconductivity of La2−xSrxCuO4. Phys. C: Superconductivity its Appl. 604, 1354177 (2023).$$v604$$y2023
000612471 999C5 $$1F Nakamura$$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1022503213459$$p1145 -$$tJ. Low. Temp. Phys.$$uNakamura, F. et al. Tc enhancement in La2−xSrxCuO4 under anisotropic pressure. J. Low. Temp. Phys. 117, 1145–1149 (1999).$$v117$$y1999
000612471 999C5 $$1H Sato$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4534(96)00675-2$$p221 -$$tPhys. C: Superconductivity$$uSato, H. & Naito, M. Increase in the superconducting transition temperature by anisotropic strain effect in (001) La1.85Sr0.15CuO4 thin films on LaSrAlO4 substrates. Phys. C: Superconductivity 274, 221–226 (1997).$$v274$$y1997
000612471 999C5 $$1J Locquet$$2Crossref$$9-- missing cx lookup --$$a10.12693/APhysPolA.92.69$$p69 -$$tActa Phys. Pol. A$$uLocquet, J. & Williams, E. Epitaxially Induced Defects in Sr- and O-doped La2CuO4 Thin Films Grown by MBE: Implications for Transport Properties. Acta Phys. Pol. A 92, 69–84 (1997).$$v92$$y1997
000612471 999C5 $$1N Takeshita$$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.73.1123$$p1123 -$$tJ. Phys. Soc. Jpn.$$uTakeshita, N., Sasagawa, T., Sugioka, T., Tokura, Y. & Takagi, H. Gigantic anisotropic uniaxial pressure effect on superconductivity within the CuO2 plane of La1.64Eu0.2Sr0.16CuO4: Strain control of stripe criticality. J. Phys. Soc. Jpn. 73, 1123–1126 (2004).$$v73$$y2004
000612471 999C5 $$2Crossref$$uChristensen, N. B. et al. Bulk charge stripe order competing with superconductivity in La2−xSrxCuO4 (x = 0.12). arXiv:1404.3192. https://arxiv.org/abs/1404.3192. (2014).
000612471 999C5 $$1J Choi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.207002$$p207002 -$$tPhys. Rev. Lett.$$uChoi, J. et al. Unveiling unequivocal charge stripe order in a prototypical cuprate superconductor. Phys. Rev. Lett. 128, 207002 (2022).$$v128$$y2022
000612471 999C5 $$1J Chang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104525$$p104525 -$$tPhys. Rev. B$$uChang, J. et al. Tuning competing orders in La2−xSrxCuO4 cuprate superconductors by the application of an external magnetic field. Phys. Rev. B 78, 104525 (2008).$$v78$$y2008
000612471 999C5 $$1B Lake$$2Crossref$$9-- missing cx lookup --$$a10.1038/415299a$$p299 -$$tNature$$uLake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002).$$v415$$y2002
000612471 999C5 $$1M Hücker$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.014501$$p014501 -$$tPhys. Rev. B$$uHücker, M. et al. Enhanced charge stripe order of superconducting La2−xBaxCuO4 in a magnetic field. Phys. Rev. B 87, 014501 (2013).$$v87$$y2013
000612471 999C5 $$1B Khaykovich$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.220508$$p220508 -$$tPhys. Rev. B$$uKhaykovich, B. et al. Field-induced transition between magnetically disordered and ordered phases in underdoped La2−xSrxCuO4. Phys. Rev. B 71, 220508 (2005).$$v71$$y2005
000612471 999C5 $$1J-J Wen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-36203-x$$tNat. Commun.$$uWen, J.-J. et al. Enhanced charge density wave with mobile superconducting vortices in La1.885Sr0.115CuO4. Nat. Commun. 14, 733 (2023).$$v14$$y2023
000612471 999C5 $$1E Demler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.067202$$p067202 -$$tPhys. Rev. Lett.$$uDemler, E., Sachdev, S. & Zhang, Y. Spin-ordering quantum transitions of superconductors in a magnetic field. Phys. Rev. Lett. 87, 067202 (2001).$$v87$$y2001
000612471 999C5 $$1B Lake$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1056986$$p1759 -$$tScience$$uLake, B. et al. Spins in the vortices of a high-temperature superconductor. Science 291, 1759–1762 (2001).$$v291$$y2001
000612471 999C5 $$1T Wu$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms3113$$tNat. Commun.$$uWu, T. et al. Emergence of charge order from the vortex state of a high-temperature superconductor. Nat. Commun. 4, 2113 (2013).$$v4$$y2013
000612471 999C5 $$1F Nakamura$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.107$$p107 -$$tPhys. Rev. B$$uNakamura, F. et al. Role of two-dimensional electronic state in superconductivity in La2−xSrxCuO4. Phys. Rev. B 61, 107–110 (2000).$$v61$$y2000
000612471 999C5 $$1CE Matt$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-03266-0$$tNat. Commun.$$uMatt, C. E. et al. Direct observation of orbital hybridisation in a cuprate superconductor. Nat. Commun. 9, 972 (2018).$$v9$$y2018
000612471 999C5 $$1KP Kramer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.224509$$p224509 -$$tPhys. Rev. B$$uKramer, K. P. et al. Band structure of overdoped cuprate superconductors: Density functional theory matching experiments. Phys. Rev. B 99, 224509 (2019).$$v99$$y2019
000612471 999C5 $$1H Sakakibara$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.057003$$p057003 -$$tPhys. Rev. Lett.$$uSakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Two-Orbital Model Explains the Higher Transition Temperature of the Single-Layer Hg-Cuprate Superconductor Compared to That of the La-Cuprate Superconductor. Phys. Rev. Lett. 105, 057003 (2010).$$v105$$y2010
000612471 999C5 $$1H Sakakibara$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.064501$$p064501 -$$tPhys. Rev. B$$uSakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Origin of the material dependence of Tc in the single-layered cuprates. Phys. Rev. B 85, 064501 (2012).$$v85$$y2012
000612471 999C5 $$1Y Koike$$2Crossref$$uKoike, Y. et al. Inhomogeneous superconductivity in both underdoped and overdoped regimes of high-Tc cuprates. J. Phys.: Conf. Ser. 108, 012003 (2008).$$y2008
000612471 999C5 $$2Crossref$$uP., B. & Segre, C. http://www.csrri.iit.edu/mucal.html. Accessed: 2024-02-06. (2020).
000612471 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-640X(70)80026-2$$uMcMaster, W. H., del Grande, N. K., Mallett, J. H. & Hubbell, J. H. Compilation of x-ray cross sections ucrl-50174, sections i, ii revision 1, iii, iv*. Lawrence Livermore National Laboratory Report UCRL-50174 (section I 1970, section II 1969, section III 1969 and section IV 1969) (1970).
000612471 999C5 $$1G Simutis$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-022-01061-4$$p296 -$$tCommun. Phys.$$uSimutis, G. et al. Single-domain stripe order in a high-temperature superconductor. Commun. Phys. 5, 296 (2022).$$v5$$y2022
000612471 999C5 $$1H Jacobsen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.174525$$p174525 -$$tPhys. Rev. B$$uJacobsen, H. et al. Neutron scattering study of spin ordering and stripe pinning in superconducting La1.93Sr0.07CuO4. Phys. Rev. B 92, 174525 (2015).$$v92$$y2015
000612471 999C5 $$1Y Horibe$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.11922$$p11922 -$$tPhys. Rev. B$$uHoribe, Y., Inoue, Y. & Koyama, Y. Direct observation of dynamic local structure in La2−xSrxCuO4 around x = 0.12. Phys. Rev. B 61, 11922–11927 (2000).$$v61$$y2000
000612471 999C5 $$1R Frison$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.105.224113$$p224113 -$$tPhys. Rev. B$$uFrison, R. et al. Crystal symmetry of stripe-ordered la1.88sr0.12cuo4. Phys. Rev. B 105, 224113 (2022).$$v105$$y2022
000612471 999C5 $$1M Janoschek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2007.02.074$$p125 -$$tPhys. B: Condens. Matter$$uJanoschek, M., Klimko, S., Gähler, R., Roessli, B. & Böni, P. Spherical neutron polarimetry with mupad. Phys. B: Condens. Matter 397, 125–130 (2007).$$v397$$y2007