001     612159
005     20250715171006.0
024 7 _ |a 10.1039/D4CP03030C
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05172
|2 datacite_doi
024 7 _ |a altmetric:167015800
|2 altmetric
024 7 _ |a pmid:39230416
|2 pmid
024 7 _ |a WOS:001304182800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4402055069
037 _ _ |a PUBDB-2024-05172
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Loru, Donatella
|0 P:(DE-H253)PIP1082744
|b 0
|e Corresponding author
|u desy
245 _ _ |a Probing the structure and dynamics of the heterocyclic PAH xanthene and its water complexes with infrared and microwave spectroscopy
260 _ _ |a Cambridge
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733487132_2348054
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To assess the presence of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in the interstellar medium and understand how water aggregates on an OPAH surface, we present a comprehensive gas-phase spectroscopy investigation of the OPAH xanthene (C$_{13}$H$_{10}$O) and its complexes with water using IR-UV ion dip spectroscopy and chirped-pulse Fourier transform microwave spectroscopy. The far-infrared spectrum of xanthene shows weak features at 3.42, 3.43, and 3.47 $\mu$m, which have been suggested to partly originate from vibrational modes of PAHs containing sp$^{3}$ hybridized carbon atoms, in agreement with the molecular structure of xanthene. The high resolution of rotational spectroscopy reveals a tunneling splitting of the rotational transitions, which can be explained with an out-of-plane bending motion of the two lateral benzene rings of xanthene. The nature of the tunnelling motion is elucidated by observing a similar splitting pattern in the rotational transitions of the singly-substituted $^{13}$C isotopologues. The rotational spectroscopy investigation is extended to hydrates of xanthene with up to four water molecules. Different xanthene-water binding motifs are observed based on the degree of hydration, with O-H $\cdots\pi$ interactions becoming preferred over O-H $\cdots$O$_\mathrm{xanthene}$ interactions as the degree of hydration increases. A structural comparison with water complexes of related molecular systems highlights the impact of the substrate's shape and chemical composition on the arrangement of the surrounding water molecules.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
542 _ _ |i 2025-08-30
|2 Crossref
|u http://rsc.li/journals-terms-of-use
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Sun, Wenhao
|0 P:(DE-H253)PIP1092107
|b 1
700 1 _ |a Nootebos, Hugo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Steber, Amanda L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ferrari, Piero
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schnell, Melanie
|0 P:(DE-H253)PIP1013514
|b 5
770 _ _ |a PCCP 2023 Emerging Investigators
773 1 8 |a 10.1039/d4cp03030c
|b Royal Society of Chemistry (RSC)
|d 2024-01-01
|n 39
|p 25341-25351
|3 journal-article
|2 Crossref
|t Physical Chemistry Chemical Physics
|v 26
|y 2024
|x 1463-9076
773 _ _ |a 10.1039/D4CP03030C
|g Vol. 26, no. 39, p. 25341 - 25351
|0 PERI:(DE-600)1476244-4
|n 39
|p 25341-25351
|t Physical chemistry, chemical physics
|v 26
|y 2024
|x 1463-9076
856 4 _ |u https://bib-pubdb1.desy.de/record/612159/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/612159/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612159/files/d4cp03030c.pdf
856 4 _ |y Published on 2024-08-30. Available in OpenAccess from 2025-08-30.
|u https://bib-pubdb1.desy.de/record/612159/files/Post-referee_version.pdf
856 4 _ |y Published on 2024-08-30. Available in OpenAccess from 2025-08-30.
|x pdfa
|u https://bib-pubdb1.desy.de/record/612159/files/Post-referee_version.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/612159/files/d4cp03030c.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:612159
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1082744
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1082744
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1092107
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1013514
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 5
|6 P:(DE-H253)PIP1013514
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2022
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
920 1 _ |0 I:(DE-H253)FS-SMP-20171124
|k FS-SMP
|l Spectroscopy of molecular processes
|x 0
920 1 _ |0 I:(DE-H253)CFEL-SDCCM-20160915
|k CFEL-SDCCM
|l MPSD
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-SMP-20171124
980 _ _ |a I:(DE-H253)CFEL-SDCCM-20160915
980 1 _ |a FullTexts
999 C 5 |a 10.1146/annurev.astro.46.060407.145211
|9 -- missing cx lookup --
|1 Tielens
|p 289 -
|2 Crossref
|t Annu. Rev. Astron. Astrophys.
|v 46
|y 2008
999 C 5 |1 Galliano
|y 2008
|2 Crossref
|o Galliano 2008
999 C 5 |a 10.1038/s42004-022-00714-3
|9 -- missing cx lookup --
|1 Hansen
|p 94 -
|2 Crossref
|t Commun. Chem.
|v 5
|y 2022
999 C 5 |a 10.1126/science.abb7535
|9 -- missing cx lookup --
|1 McGuire
|p 1265 -
|2 Crossref
|t Science
|v 371
|y 2021
999 C 5 |a 10.1051/0004-6361/202141156
|9 -- missing cx lookup --
|1 Cernicharo
|p L15 -
|2 Crossref
|t Astron. Astrophys.
|v 649
|y 2021
999 C 5 |a 10.3847/2041-8213/ac92f4
|9 -- missing cx lookup --
|1 Sita
|p L12 -
|2 Crossref
|t Astrophys. J., Lett.
|v 938
|y 2022
999 C 5 |a 10.3847/2041-8213/abfd3a
|9 -- missing cx lookup --
|1 Burkhardt
|p L18 -
|2 Crossref
|t Astrophys. J., Lett.
|v 913
|y 2021
999 C 5 |a 10.1051/0004-6361:20020773
|9 -- missing cx lookup --
|1 Peeters
|p 1089 -
|2 Crossref
|t Astron. Astrophys.
|v 390
|y 2002
999 C 5 |a 10.1126/science.283.5405.1135
|9 -- missing cx lookup --
|1 Bernstein
|p 1135 -
|2 Crossref
|t Science
|v 283
|y 1999
999 C 5 |1 De Barros
|y 2017
|2 Crossref
|o De Barros 2017
999 C 5 |a 10.1051/0004-6361/201015762
|9 -- missing cx lookup --
|1 Bouwman
|p 2035 -
|2 Crossref
|t Astron. Astrophys.
|v 529
|y 2011
999 C 5 |a 10.1051/0004-6361/201629613
|9 -- missing cx lookup --
|1 Noble
|p A124 -
|2 Crossref
|t Astron. Astrophys.
|v 599
|y 2017
999 C 5 |a 10.1051/0004-6361/202038568
|9 -- missing cx lookup --
|1 Noble
|p A22 -
|2 Crossref
|t Astron. Astrophys.
|v 644
|y 2020
999 C 5 |a 10.1051/0004-6361/202346662
|9 -- missing cx lookup --
|1 Chown
|p A75 -
|2 Crossref
|t Astron. Astrophys.
|v 685
|y 2024
999 C 5 |1 Cazaux
|y 2019
|2 Crossref
|o Cazaux 2019
999 C 5 |a 10.1002/pro.4792
|9 -- missing cx lookup --
|1 Meng
|p e4792 -
|2 Crossref
|t Prot. Sci.
|v 32
|y 2023
999 C 5 |a 10.1039/C7CP01506B
|9 -- missing cx lookup --
|1 Pérez
|p 14214 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 19
|y 2017
999 C 5 |a 10.1021/acs.jpclett.7b02695
|9 -- missing cx lookup --
|1 Steber
|p 5744 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 8
|y 2017
999 C 5 |a 10.1039/D1CP00898F
|9 -- missing cx lookup --
|1 Loru
|p 9721 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 23
|y 2021
999 C 5 |1 Loru
|y 2023
|2 Crossref
|o Loru 2023
999 C 5 |a 10.1016/j.jms.2012.08.001
|9 -- missing cx lookup --
|1 Schmitz
|p 77 -
|2 Crossref
|t J. Mol. Spectrosc.
|v 280
|y 2012
999 C 5 |a 10.1021/acs.jpclett.5b02541
|9 -- missing cx lookup --
|1 Perez
|p 154 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 7
|y 2016
999 C 5 |a 10.1080/00268976.2023.2261570
|9 -- missing cx lookup --
|1 Esposito
|p e2261570 -
|2 Crossref
|t Mol. Phys.
|v 122
|y 2023
999 C 5 |a 10.1007/978-3-319-19204-8
|1 Rijs
|y 2015
|2 Crossref
|u A. M.Rijs and J.Oomens , Gas-phase IR spectroscopy and structure of biological molecules , Springer , 2015 , vol. 364
|9 -- missing cx lookup --
999 C 5 |a 10.1039/D3CP05756A
|9 -- missing cx lookup --
|1 Ferrari
|p 12324 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 26
|y 2024
999 C 5 |a 10.1103/PhysRevLett.117.118101
|9 -- missing cx lookup --
|1 Yatsyna
|p 118101 -
|2 Crossref
|t Phys. Rev. Lett.
|v 117
|y 2016
999 C 5 |1 Neese
|y 2022
|2 Crossref
|o Neese 2022
999 C 5 |a 10.1063/1.462066
|9 -- missing cx lookup --
|1 Becke
|p 2155 -
|2 Crossref
|t J. Chem. Phys.
|v 96
|y 1992
999 C 5 |a 10.1039/b508541a
|9 -- missing cx lookup --
|1 Weigend
|p 3297 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 7
|y 2005
999 C 5 |a 10.1002/jcc.21759
|9 -- missing cx lookup --
|1 Grimme
|p 1456 -
|2 Crossref
|t J. Comput. Chem.
|v 32
|y 2011
999 C 5 |a 10.1002/cphc.202400547
|9 -- missing cx lookup --
|1 Tikhonov
|p e202400547 -
|2 Crossref
|t ChemPhysChem
|y 2024
999 C 5 |a 10.1021/acs.jctc.1c00462
|9 -- missing cx lookup --
|1 Ásgeirsson
|p 4929 -
|2 Crossref
|t J. Chem. Theory Comput.
|v 17
|y 2021
999 C 5 |a 10.1039/C9CP06869D
|9 -- missing cx lookup --
|1 Pracht
|p 7169 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 22
|y 2020
999 C 5 |a 10.1021/acs.jctc.8b01176
|9 -- missing cx lookup --
|1 Bannwarth
|p 1652 -
|2 Crossref
|t J. Chem. Theory Comput.
|v 15
|y 2019
999 C 5 |a 10.1063/1.5090222
|9 -- missing cx lookup --
|1 Caldeweyher
|p 154122 -
|2 Crossref
|t J. Chem. Phys.
|v 150
|y 2019
999 C 5 |1 Lemmens
|y 2021
|2 Crossref
|o Lemmens 2021
999 C 5 |1 Pla
|y 2020
|2 Crossref
|o Pla 2020
999 C 5 |a 10.1080/00268976.2023.2252936
|9 -- missing cx lookup --
|1 Esposito
|p e2252936 -
|2 Crossref
|t Mol. Phys.
|v 122
|y 2024
999 C 5 |a 10.1063/1.4936779
|9 -- missing cx lookup --
|1 Mackie
|p 224314 -
|2 Crossref
|t J. Chem. Phys.
|v 143
|y 2015
999 C 5 |a 10.1016/0022-2852(91)90393-O
|9 -- missing cx lookup --
|1 Pickett
|p 371 -
|2 Crossref
|t J. Mol. Spectrosc.
|v 148
|y 1991
999 C 5 |1 Kisiel
|2 Crossref
|u Z.Kisiel , PROSPE-Programs for ROtational SPEctroscopy, https://info.ifpan.edu.pl/kisiel/prospe.htm (accessed: 09.07.2024)
999 C 5 |a 10.1119/1.1933338
|9 -- missing cx lookup --
|1 Kraitchman
|p 17 -
|2 Crossref
|t Am. J. Phys.
|v 21
|y 1953
999 C 5 |a 10.1063/1.1329672
|9 -- missing cx lookup --
|1 Henkelman
|p 9901 -
|2 Crossref
|t J. Chem. Phys.
|v 113
|y 2000
999 C 5 |a 10.1063/1.4773581
|9 -- missing cx lookup --
|1 Riplinger
|p 034106 -
|2 Crossref
|t J. Chem. Phys.
|v 138
|y 2013
999 C 5 |a 10.1002/anie.201407447
|9 -- missing cx lookup --
|1 Pérez
|p 14368 -
|2 Crossref
|t Angew. Chem., Int. Ed.
|v 53
|y 2014
999 C 5 |1 Jeffrey
|y 1997
|2 Crossref
|u G. A.Jeffrey and G. A.Jeffrey , An introduction to hydrogen bonding , Oxford university press , New York , 1997 , vol. 12
|t An introduction to hydrogen bonding


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21