001     611864
005     20250723171929.0
024 7 _ |2 doi
|a 10.1088/1367-2630/ad5d84
024 7 _ |2 datacite_doi
|a 10.3204/PUBDB-2024-05084
024 7 _ |a WOS:001268945200001
|2 WOS
024 7 _ |a openalex:W4400178978
|2 openalex
037 _ _ |a PUBDB-2024-05084
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-H253)PIP1014755
|a Sauppe, M.
|b 0
|e Corresponding author
245 _ _ |a Double diffraction imaging of x-ray induced structural dynamics in single free nanoparticles
260 _ _ |a [London]
|b IOP
|c 2024
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1721820870_2985880
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Because of their high photon flux, x-ray free-electron lasers (FEL) allow to resolve the structure of individual nanoparticles via coherent diffractive imaging (CDI) within a single x-ray pulse. Since the inevitable rapid destruction of the sample limits the achievable resolution, a thorough understanding of the spatiotemporal evolution of matter on the nanoscale following the irradiation is crucial. We present a technique to track x-ray induced structural changes in time and space by recording two consecutive diffraction patterns of the same single, free-flying nanoparticle, acquired separately on two large-area detectors opposite to each other, thus examining both the initial and evolved particle structure. We demonstrate the method at the extreme ultraviolet (XUV) and soft x-ray Free-electron LASer in Hamburg (FLASH), investigating xenon clusters as model systems. By splitting a single XUV pulse, two diffraction patterns from the same particle can be obtained. For focus intensities of about 2 x 10$^{12}$ W cm$^{−2}$ we observe still largely intact clusters even at the longest delays of up to 650 picoseconds of the second pulse, indicating that in the highly absorbing systems the damage remains confined to one side of the cluster. Instead, in case of five times higher flux, the diffraction patterns show clear signatures of disintegration, namely increased diameters and density fluctuations in the fragmenting clusters. Future improvements to the accessible range of dynamics and time resolution of the approach are discussed.
536 _ _ |0 G:(DE-HGF)POF4-631
|a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|c POF4-631
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-6G2
|a 6G2 - FLASH (DESY) (POF4-6G2)
|c POF4-6G2
|f POF IV
|x 1
536 _ _ |0 G:(DE-H253)F-20140076
|a FS-Proposal: F-20140076 (F-20140076)
|c F-20140076
|x 2
536 _ _ |0 G:(DE-H253)F-20160533
|a FS-Proposal: F-20160533 (F-20160533)
|c F-20160533
|x 3
542 _ _ |2 Crossref
|i 2024-07-11
|u http://creativecommons.org/licenses/by/4.0
542 _ _ |2 Crossref
|i 2024-07-11
|u https://iopscience.iop.org/info/page/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-H253)F-BL1-20150101
|1 EXP:(DE-H253)FLASH-20150101
|6 EXP:(DE-H253)F-BL1-20150101
|a FLASH
|f FLASH Beamline BL1
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Bischoff, T.
|b 1
700 1 _ |0 P:(DE-H253)PIP1019613
|a Bomme, Cedric
|b 2
700 1 _ |0 P:(DE-H253)PIP1007475
|a Bostedt, Christoph
|b 3
700 1 _ |0 P:(DE-H253)PIP1084886
|a Colombo, Alessandro
|b 4
700 1 _ |0 P:(DE-H253)PIP1011809
|a Erk, B.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Feigl, T.
|b 6
700 1 _ |0 P:(DE-H253)PIP1013638
|a Flueckiger, Leonie
|b 7
700 1 _ |0 P:(DE-H253)PIP1084921
|a Gorkhover, Taisia
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Heilrath, Andrea
|b 9
700 1 _ |0 P:(DE-H253)PIP1027599
|a Kolatzki, Katharina
|b 10
700 1 _ |0 P:(DE-H253)PIP1032650
|a Kumagai, Yoshiaki
|b 11
700 1 _ |0 P:(DE-H253)PIP1020826
|a Langbehn, Bruno
|b 12
700 1 _ |0 P:(DE-H253)PIP1017923
|a Mueller, Jan Philippe
|b 13
700 1 _ |0 P:(DE-H253)PIP1013418
|a Passow, Christopher
|b 14
700 1 _ |0 P:(DE-H253)PIP1019336
|a Ramm, Daniel
|b 15
700 1 _ |0 P:(DE-H253)PIP1007320
|a Rolles, Daniel
|b 16
700 1 _ |0 P:(DE-H253)PIP1014316
|a Rompotis, Dimitrios
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Schäfer-Zimmermann, J.
|b 18
700 1 _ |0 P:(DE-H253)PIP1027397
|a Senfftleben, B.
|b 19
700 1 _ |0 P:(DE-H253)PIP1001400
|a Treusch, Rolf
|b 20
700 1 _ |0 P:(DE-H253)PIP1020827
|a Ulmer, Anatoli
|b 21
700 1 _ |0 P:(DE-H253)PIP1026904
|a Zimbalski, Jannis
|b 22
700 1 _ |0 P:(DE-H253)PIP1006405
|a Moeller, Thomas
|b 23
700 1 _ |0 P:(DE-H253)PIP1008070
|a Rupp, Daniela
|b 24
|e Corresponding author
773 1 8 |2 Crossref
|3 journal-article
|a 10.1088/1367-2630/ad5d84
|b IOP Publishing
|d 2024-07-01
|n 7
|p 073019
|t New Journal of Physics
|v 26
|x 1367-2630
|y 2024
773 _ _ |0 PERI:(DE-600)1464444-7
|a 10.1088/1367-2630/ad5d84
|g Vol. 26, no. 7, p. 073019 -
|n 7
|p 073019
|t New journal of physics
|v 26
|x 1367-2630
|y 2024
856 4 _ |u https://bib-pubdb1.desy.de/record/611864/files/Sauppe_2024_New_J._Phys._26_073019.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/611864/files/Sauppe_2024_New_J._Phys._26_073019.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:611864
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1014755
|a External Institute
|b 0
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1019613
|a External Institute
|b 2
|k Extern
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1019613
|a Deutsches Elektronen-Synchrotron
|b 2
|k DESY
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1007475
|a External Institute
|b 3
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1084886
|a External Institute
|b 4
|k Extern
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1011809
|a Deutsches Elektronen-Synchrotron
|b 5
|k DESY
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1011809
|a European XFEL
|b 5
|k XFEL.EU
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1013638
|a External Institute
|b 7
|k Extern
910 1 _ |0 I:(DE-H253)_CFEL-20120731
|6 P:(DE-H253)PIP1084921
|a Centre for Free-Electron Laser Science
|b 8
|k CFEL
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1084921
|a European XFEL
|b 8
|k XFEL.EU
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1027599
|a External Institute
|b 10
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1032650
|a External Institute
|b 11
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1020826
|a External Institute
|b 12
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1017923
|a External Institute
|b 13
|k Extern
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1013418
|a Deutsches Elektronen-Synchrotron
|b 14
|k DESY
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1013418
|a European XFEL
|b 14
|k XFEL.EU
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1019336
|a Deutsches Elektronen-Synchrotron
|b 15
|k DESY
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1007320
|a External Institute
|b 16
|k Extern
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1014316
|a European XFEL
|b 17
|k XFEL.EU
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1014316
|a FS-FLASH-O
|b 17
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1027397
|a Deutsches Elektronen-Synchrotron
|b 19
|k DESY
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1027397
|a European XFEL
|b 19
|k XFEL.EU
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1001400
|a Deutsches Elektronen-Synchrotron
|b 20
|k DESY
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1020827
|a External Institute
|b 21
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1026904
|a External Institute
|b 22
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1006405
|a External Institute
|b 23
|k Extern
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1008070
|a External Institute
|b 24
|k Extern
913 1 _ |0 G:(DE-HGF)POF4-631
|1 G:(DE-HGF)POF4-630
|2 G:(DE-HGF)POF4-600
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |0 G:(DE-HGF)POF4-6G2
|1 G:(DE-HGF)POF4-6G0
|2 G:(DE-HGF)POF4-600
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|v FLASH (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
|d 2024-12-17
|w ger
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NEW J PHYS : 2022
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2024-08-08T17:02:41Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2024-08-08T17:02:41Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Anonymous peer review, Double anonymous peer review
|d 2024-08-08T17:02:41Z
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2024-12-17
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-FLASH-O-20160930
|k FS-FLASH-O
|l FLASH Wissenschaftlicher Nutzerbetrieb
|x 1
920 1 _ |0 I:(DE-H253)FS-FLASH-D-20160930
|k FS-FLASH-D
|l FLASH Photonen-Diagnose und Steuerungen
|x 2
920 1 _ |0 I:(DE-H253)UNI_PHY-20170505
|k UNI/PHY
|l Uni Hamburg / Physik
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-FLASH-O-20160930
980 _ _ |a I:(DE-H253)FS-FLASH-D-20160930
980 _ _ |a I:(DE-H253)UNI_PHY-20170505
980 1 _ |a FullTexts
999 C 5 |1 Ackermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nphoton.2007.76
|p 336 -
|t Nat. Photon.
|v 1
|y 2007
999 C 5 |1 Aguilar
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevA.73.032717
|t Phys. Rev. A
|v 73
|y 2006
999 C 5 |1 Allahgholi
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S1600577518016077
|p 74 -
|t J. Synchrotron Radiat.
|v 26
|y 2019
999 C 5 |1 Andersen
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/0953-4075/34/10/314
|p 2009 -
|t J. Phys. B: At. Mol. Opt. Phys.
|v 34
|y 2001
999 C 5 |1 Arbeiter
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevA.89.043428
|t Phys. Rev. A
|v 89
|y 2014
999 C 5 |1 Attwood
|2 Crossref
|o Attwood 2017
|y 2017
999 C 5 |1 Bacellar
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.129.073201
|t Phys. Rev. Lett.
|v 129
|y 2022
999 C 5 |1 Barke
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/ncomms7187
|p 6187 -
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |1 Bellucci
|2 Crossref
|9 -- missing cx lookup --
|a 10.1364/OE.492137
|p 18399 -
|t Opt. Express
|v 31
|y 2023
999 C 5 |1 Bogan
|2 Crossref
|9 -- missing cx lookup --
|a 10.1080/02786820903485800
|p i -
|t Aerosol Sci. Technol.
|v 44
|y 2010
999 C 5 |1 Bostedt
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.108.093401
|t Phys. Rev. Lett.
|v 108
|y 2012
999 C 5 |1 Bostedt
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/0953-4075/43/19/194011
|t J. Phys. B: At. Mol. Opt. Phys.
|v 43
|y 2010
999 C 5 |1 Bostedt
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/RevModPhys.88.015007
|t Rev. Mod. Phys.
|v 88
|y 2016
999 C 5 |1 Bostedt
|2 Crossref
|o Bostedt 2020
|y 2020
999 C 5 |1 Bourassin-Bouchet
|2 Crossref
|o Bourassin-Bouchet 2015
|y 2015
999 C 5 |1 Bragg
|2 Crossref
|9 -- missing cx lookup --
|a 10.1098/rspa.1913.0040
|p 428 -
|t Proc. R. Soc.
|v 88
|y 1913
999 C 5 |1 Chapman
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nphys461
|p 839 -
|t Nat. Phys.
|v 2
|y 2006
999 C 5 |1 Chapman
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nphoton.2010.240
|p 833 -
|t Nat. Photon.
|v 4
|y 2010
999 C 5 |1 Coffee
|2 Crossref
|9 -- missing cx lookup --
|a 10.1098/rsta.2018.0386
|t Phil. Trans. R. Soc. A
|v 377
|y 2019
999 C 5 |1 Colombo
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S1600576722008068
|p 1232 -
|t J. Appl. Crystallogr.
|v 55
|y 2022
999 C 5 |1 Dold
|2 Crossref
|o Dold 2023
|y 2023
999 C 5 |1 Ederer
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.13.760
|p 760 -
|t Phys. Rev. Lett.
|v 13
|y 1964
999 C 5 |1 Ekeberg
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.114.098102
|t Phys. Rev. Lett.
|v 114
|y 2015
999 C 5 |1 Emmons
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevA.71.042704
|t Phys. Rev. A
|v 71
|y 2005
999 C 5 |1 Erk
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S1600577518008585
|p 1529 -
|t J. Synchrotron Radiat.
|v 25
|y 2018
999 C 5 |1 Feigl
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.mee.2005.12.033
|p 703 -
|t Microelectron. Eng.
|v 83
|y 2006
999 C 5 |1 Fennel
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/RevModPhys.82.1793
|p 1793 -
|t Rev. Mod. Phys.
|v 82
|y 2010
999 C 5 |1 Flückiger
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1367-2630/18/4/043017
|t New J. Phys.
|v 18
|y 2016
999 C 5 |1 Franklin
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/171740a0
|p 740 -
|t Nature
|v 171
|y 1953
999 C 5 |1 Gerken
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.112.213002
|t Phys. Rev. Lett.
|v 112
|y 2014
999 C 5 |1 Gomez
|2 Crossref
|9 -- missing cx lookup --
|a 10.1126/science.1252395
|p 906 -
|t Science
|v 345
|y 2014
999 C 5 |1 Gorkhover
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.108.245005
|t Phys. Rev. Lett.
|v 108
|y 2012
999 C 5 |1 Gorkhover
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nphoton.2015.264
|p 93 -
|t Nat. Photon.
|v 10
|y 2016
999 C 5 |1 Günther
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nphoton.2010.287
|p 99 -
|t Nat. Photon.
|v 5
|y 2011
999 C 5 |1 Hantke
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nphoton.2014.270
|p 943 -
|t Nat. Photon.
|v 8
|y 2014
999 C 5 |1 Hau-Riege
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevE.69.051906
|t Phys. Rev. E
|v 69
|y 2004
999 C 5 |1 Ho
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/s41467-019-13905-9
|p 167 -
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |1 Hoshino
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S0909049511017547
|p 569 -
|t J. Synchrotron Radiat.
|v 18
|y 2011
999 C 5 |1 Ihm
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/s41467-019-10328-4
|p 2411 -
|t Nat. Commun.
|v 10
|y 2019
999 C 5 |1 Langbehn
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.121.255301
|t Phys. Rev. Lett.
|v 121
|y 2018
999 C 5 |1 Langbehn
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1367-2630/aca176
|t New J. Phys.
|v 24
|y 2022
999 C 5 |1 Loh
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nature11222
|p 513 -
|t Nature
|v 486
|y 2012
999 C 5 |1 Lukirskii
|2 Crossref
|o Lukirskii 1964
|y 1964
999 C 5 |1 Maroju
|2 Crossref
|9 -- missing cx lookup --
|a 10.3390/app11219791
|p 9791 -
|t Appl. Sci.
|v 11
|y 2021
999 C 5 |1 Miao
|2 Crossref
|9 -- missing cx lookup --
|a 10.1126/science.aaa1394
|p 530 -
|t Science
|v 348
|y 2015
999 C 5 |1 Milne
|2 Crossref
|9 -- missing cx lookup --
|a 10.3390/app7070720
|p 720 -
|t Appl. Sci.
|v 7
|y 2017
999 C 5 |1 Neutze
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/35021099
|p 752 -
|t Nature
|v 406
|y 2000
999 C 5 |1 Peltz
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1367-2630/ac5e86
|t New J. Phys.
|v 24
|y 2022
999 C 5 |1 Peltz
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.113.133401
|t Phys. Rev. Lett.
|v 113
|y 2014
999 C 5 |1 Pócsik
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/BF01544020
|p 395 -
|t Z. Phys. D
|v 20
|y 1991
999 C 5 |1 Rompotis
|2 Crossref
|9 -- missing cx lookup --
|a 10.1364/OPTICA.4.000871
|p 871 -
|t Optica
|v 4
|y 2017
999 C 5 |1 Röntgen
|2 Crossref
|o Röntgen 1896
|y 1896
999 C 5 |1 Roseker
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/s41467-018-04178-9
|p 1704 -
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |1 Rupp
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1367-2630/14/5/055016
|t New J. Phys.
|v 14
|y 2012
999 C 5 |1 Rupp
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/1.4890323
|t J. Chem. Phys.
|v 141
|y 2014
999 C 5 |1 Rupp
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.117.153401
|t Phys. Rev. Lett.
|v 117
|y 2016
999 C 5 |1 Rupp
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/4.0000006
|t Struct. Dyn.
|v 7
|y 2020
999 C 5 |1 Saalmann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/0953-4075/39/4/R01
|p R39 -
|t J. Phys. B: At. Mol. Opt. Phys.
|v 39
|y 2006
999 C 5 |1 Saladrigas
|2 Crossref
|9 -- missing cx lookup --
|a 10.1140/epjs/s11734-021-00280-0
|p 4011 -
|t Eur. Phys. J. Spec. Top.
|v 230
|y 2021
999 C 5 |1 Sauppe
|2 Crossref
|9 -- missing cx lookup --
|a 10.5281/zenodo.10391943
|t Zenodo
|y 2015 & 2017
999 C 5 |1 Sauppe
|2 Crossref
|9 -- missing cx lookup --
|a 10.1107/S1600577518006094
|p 1517 -
|t J. Synchrotron Radiat.
|v 25
|y 2018
999 C 5 |1 Schmidt
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.101.115507
|t Phys. Rev. Lett.
|v 101
|y 2008
999 C 5 |1 Schütte
|2 Crossref
|9 -- missing cx lookup --
|a 10.1103/PhysRevLett.112.253401
|t Phys. Rev. Lett.
|v 112
|y 2014
999 C 5 |1 Seddon
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1361-6633/aa7cca
|t Rep. Prog. Phys.
|v 80
|y 2017
999 C 5 |1 Seibert
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nature09748
|p 78 -
|t Nature
|v 470
|y 2011
999 C 5 |1 Serkez
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/2040-8986/aa9f4f
|t J. Opt.
|v 20
|y 2018
999 C 5 |1 Strüder
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.nima.2009.12.053
|p 483 -
|t Nucl. Instrum. Methods Phys. Res. A
|v 614
|y 2010
999 C 5 |1 Tiedtke
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1367-2630/11/2/023029
|t New J. Phys.
|v 11
|y 2009
999 C 5 |1 Trebushinin
|2 Crossref
|9 -- missing cx lookup --
|a 10.3390/photonics10020131
|p 131 -
|t Photonics
|v 10
|y 2023
999 C 5 |1 van der Schot
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/ncomms6704
|p 5704 -
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |1 Van Thor
|2 Crossref
|9 -- missing cx lookup --
|a 10.1063/1.4906354
|t Struct. Dyn.
|v 2
|y 2015
999 C 5 |1 Watson
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/171737a0
|p 737 -
|t Nature
|v 171
|y 1953
999 C 5 |1 Young
|2 Crossref
|9 -- missing cx lookup --
|a 10.1088/1361-6455/aa9735
|t J. Phys. B: At. Mol. Opt. Phys.
|v 51
|y 2018


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21