000611665 001__ 611665
000611665 005__ 20250715170827.0
000611665 0247_ $$2doi$$a10.1063/5.0189633
000611665 0247_ $$2ISSN$$a0021-9606
000611665 0247_ $$2ISSN$$a1520-9032
000611665 0247_ $$2ISSN$$a1089-7690
000611665 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-04999
000611665 0247_ $$2altmetric$$aaltmetric:159435391
000611665 0247_ $$2pmid$$apmid:38341790
000611665 0247_ $$2WOS$$aWOS:001160932900001
000611665 0247_ $$2openalex$$aopenalex:W4391735164
000611665 037__ $$aPUBDB-2024-04999
000611665 041__ $$aEnglish
000611665 082__ $$a530
000611665 1001_ $$aDittrich, Guido$$b0
000611665 245__ $$aPolymeric liquids in mesoporous photonic structures: From precursor film spreading to imbibition dynamics at the nanoscale
000611665 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2024
000611665 3367_ $$2DRIVER$$aarticle
000611665 3367_ $$2DataCite$$aOutput Types/Journal article
000611665 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1720442927_1580908
000611665 3367_ $$2BibTeX$$aARTICLE
000611665 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000611665 3367_ $$00$$2EndNote$$aJournal Article
000611665 500__ $$aPIP-2020-1049
000611665 520__ $$aPolymers are known to wet nanopores with high surface energy through an atomically thin precursor film followed by slower capillary filling. We present here light interference spectroscopy using a mesoporous membrane-based chip that allows us to observe the dynamics of these phenomena in situ down to the sub-nanometer scale at milli- to microsecond temporal resolution. The device consists of a mesoporous silicon film (average pore size 6 nm) with an integrated photonic crystal, which permits to simultaneously measure the phase shift of thin film interference and the resonance of the photonic crystal upon imbibition. For a styrene dimer, we find a flat fluid front without a precursor film, while the pentamer forms an expanding molecular thin film moving in front of the menisci of the capillary filling. These different behaviors are attributed to a significantly faster pore-surface diffusion compared to the imbibition dynamics for the pentamer and vice versa for the dimer. In addition, both oligomers exhibit anomalously slow imbibition dynamics, which could be explained by apparent viscosities of six and eleven times the bulk value, respectively. However, a more consistent description of the dynamics is achieved by a constriction model that emphasizes the increasing importance of local undulations in the pore radius with the molecular size and includes a sub-nanometer hydrodynamic dead, immobile zone at the pore wall but otherwise uses bulk fluid parameters. Overall, our study illustrates that interferometric, opto-fluidic experiments with mesoporous media allow for a remarkably detailed exploration of the nano-rheology of polymeric liquids.
000611665 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000611665 536__ $$0G:(GEPRIS)519853330$$aDFG project 519853330 - Hyperuniformes poröses anodisches Aluminiumioxid: ein 2D-Metamaterial mit verbesserten mechanischen Eigenschaften als Plattform für Zweischichtkomposit-Aktuatoren. (519853330)$$c519853330$$x1
000611665 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000611665 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000611665 7001_ $$00000-0003-2858-6827$$aCencha, Luisa G.$$b1
000611665 7001_ $$00000-0002-5241-8498$$aSteinhart, Martin$$b2
000611665 7001_ $$aWehrspohn, Ralf B.$$b3
000611665 7001_ $$00000-0002-1321-6738$$aBerli, Claudio L. A.$$b4
000611665 7001_ $$00000-0003-3206-2700$$aUrteaga, Raul$$b5
000611665 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b6$$eCorresponding author
000611665 77318 $$2Crossref$$3journal-article$$a10.1063/5.0189633$$bAIP Publishing$$d2024-02-09$$n6$$tThe Journal of Chemical Physics$$v160$$x0021-9606$$y2024
000611665 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0189633$$gVol. 160, no. 6, p. 064903$$n6$$p064903$$tThe journal of chemical physics$$v160$$x0021-9606$$y2024
000611665 8564_ $$uhttps://bib-pubdb1.desy.de/record/611665/files/064903_1_5.0189633.pdf$$yOpenAccess
000611665 8564_ $$uhttps://bib-pubdb1.desy.de/record/611665/files/064903_1_5.0189633.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000611665 909CO $$ooai:bib-pubdb1.desy.de:611665$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000611665 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000611665 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b6$$kExtern
000611665 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000611665 9141_ $$y2024
000611665 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000611665 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000611665 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000611665 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000611665 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-06$$wger
000611665 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2022$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000611665 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
000611665 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x0
000611665 9201_ $$0I:(DE-H253)TUHH-20210331$$kTUHH$$lTechnische Universität Hamburg-Harburg$$x1
000611665 980__ $$ajournal
000611665 980__ $$aVDB
000611665 980__ $$aUNRESTRICTED
000611665 980__ $$aI:(DE-H253)CIMMS-20211022
000611665 980__ $$aI:(DE-H253)TUHH-20210331
000611665 9801_ $$aFullTexts
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.110.108303$$p108303 -$$tPhys. Rev. Lett.$$v110$$y2013
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jz1012406$$p3116 -$$tJ. Phys. Chem. Lett.$$v1$$y2010
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1071210$$p1997 -$$tScience$$v296$$y2002
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.sna.2022.113571$$p113571 -$$tSens. Actuators, A$$v341$$y2022
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/bf01461107$$p15 -$$tKolloid-Z.$$v23$$y1918
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrev.17.273$$p273 -$$tPhys. Rev.$$v17$$y1921
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/s0022112008003996$$p335 -$$tJ. Fluid Mech.$$v615$$y2008
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physreve.79.067301$$p067301 -$$tPhys. Rev. E$$v79$$y2009
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.colsurfa.2015.09.055$$p13 -$$tColloids Surf., A$$v496$$y2016
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/27/10/103102$$p103102 -$$tJ. Phys.: Condens. Matter$$v27$$y2015
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.1c06798$$p26731 -$$tJ. Phys. Chem. C$$v125$$y2021
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.2c01991$$p12765 -$$tJ. Phys. Chem. C$$v126$$y2022
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5119338$$p113701 -$$tAppl. Phys. Lett.$$v115$$y2019
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4978298$$p203320 -$$tJ. Chem. Phys.$$v146$$y2017
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/marc.201800087$$p1800087 -$$tMacromol. Rapid Commun.$$v39$$y2018
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.99.054501$$p054501 -$$tPhys. Rev. Lett.$$v99$$y2007
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/84/44003$$p44003 -$$tEurophys. Lett.$$v84$$y2008
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3429312$$p224502 -$$tJ. Chem. Phys.$$v132$$y2010
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.125.127802$$p127802 -$$tPhys. Rev. Lett.$$v125$$y2020
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.macromol.2c02157$$p2258 -$$tMacromolecules$$v56$$y2023
000611665 999C5 $$2Crossref$$oPorous Silicon in Practice 2012$$tPorous Silicon in Practice$$y2012
000611665 999C5 $$1Canham$$2Crossref$$oCanham Handbook of Porous Silicon 2015$$tHandbook of Porous Silicon$$y2015
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aba1483$$peaba1483 -$$tSci. Adv.$$v6$$y2020
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.202105923$$p2105923 -$$tAdv. Mater.$$v34$$y2022
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevmaterials.6.116002$$p116002 -$$tPhys. Rev. Mater.$$v6$$y2022
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/s130404694$$p4694 -$$tSensors$$v13$$y2013
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la049741u$$p5104 -$$tLangmuir$$v20$$y2004
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.125.234502$$p234502 -$$tPhys. Rev. Lett.$$v125$$y2020
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.75.021607$$p021607 -$$tPhys. Rev. E$$v75$$y2007
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3696684$$p124505 -$$tJ. Chem. Phys.$$v136$$y2012
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physreve.86.021701$$p021701 -$$tPhys. Rev. E$$v86$$y2012
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep40207$$p40207 -$$tSci. Rep.$$v7$$y2017
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4923240$$p261901 -$$tAppl. Phys. Lett.$$v106$$y2015
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-021-23398-0$$p3597 -$$tNat. Commun.$$v12$$y2021
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c5ra24991k$$p7553 -$$tRSC Adv.$$v6$$y2016
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/j100698a026$$p632 -$$tJ. Phys. Chem.$$v74$$y1970
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2021.07.062$$p441 -$$tJ. Colloid Interface Sci.$$v605$$y2022
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.solmat.2008.06.009$$p1305 -$$tSol. Energy Mater. Sol. Cells$$v92$$y2008
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/josa.62.000958$$p958 -$$tJ. Opt. Soc. Am.$$v62$$y1972
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/ao.383831$$p2337 -$$tAppl. Opt.$$v59$$y2020
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la104502u$$p2067 -$$tLangmuir$$v27$$y2011
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4904714$$p241906 -$$tAppl. Phys. Lett.$$v105$$y2014
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.macromol.8b01504$$p8721 -$$tMacromolecules$$v51$$y2018
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-fluid-071320-095958$$p377 -$$tAnnu. Rev. Fluid Mech.$$v53$$y2021
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10404-022-02590-8$$p87 -$$tMicrofluid. Nanofluid.$$v26$$y2022
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/ft9918700619$$p619 -$$tJ. Chem. Soc., Faraday Trans.$$v87$$y1991
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c6cp06602j$$p1731 -$$tPhys. Chem. Chem. Phys.$$v19$$y2017
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0021-9797(77)90314-9$$p497 -$$tJ. Colloid Interface Sci.$$v60$$y1977
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1551-2916.2007.01776.x$$p3040 -$$tJ. Am. Ceram. Soc.$$v90$$y2007
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ed400164n$$p1093 -$$tJ. Chem. Educ.$$v90$$y2013
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-021-00881-9$$p661 -$$tNat. Nanotechnol.$$v16$$y2021
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c6sm00733c$$p6656 -$$tSoft Matter$$v12$$y2016
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11242-018-1133-z$$p599 -$$tTransp. Porous Media$$v126$$y2019
000611665 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ma0113529$$p1776 -$$tMacromolecules$$v35$$y2002