001     611664
005     20250715170840.0
024 7 _ |a 10.1021/acsnano.4c01062
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-04998
|2 datacite_doi
024 7 _ |a altmetric:163508264
|2 altmetric
024 7 _ |a pmid:38760015
|2 pmid
024 7 _ |a WOS:001227280600001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4396988794
037 _ _ |a PUBDB-2024-04998
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Li, Zhuoqing
|0 P:(DE-H253)PIP1095928
|b 0
|u desy
245 _ _ |a Self-Assembly of Ionic Superdiscs in Nanopores
260 _ _ |a Washington, DC
|c 2024
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738233197_3825142
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperature-dependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic–hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)430146019 - Ionische Flüssigkristalle in Nanoporösen Festkörpern: Selbstorganisation, molekulare Mobilität und elektro-optische Funktionalitäten (430146019)
|0 G:(GEPRIS)430146019
|c 430146019
|x 2
542 _ _ |i 2024-05-17
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P08
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P08-20150101
|6 EXP:(DE-H253)P-P08-20150101
|x 0
700 1 _ |a Raab, Aileen
|b 1
700 1 _ |a Kolmangadi, Mohamed Aejaz
|b 2
700 1 _ |a Busch, Mark
|0 P:(DE-H253)PIP1020038
|b 3
700 1 _ |a Grunwald, Marco
|b 4
700 1 _ |a Demel, Felix
|b 5
700 1 _ |a Bertram, Florian
|0 P:(DE-H253)PIP1007852
|b 6
|u desy
700 1 _ |a Kityk, Andriy V.
|0 0000-0002-4823-3220
|b 7
700 1 _ |a Schönhals, Andreas
|0 0000-0003-4330-9107
|b 8
700 1 _ |a Laschat, Sabine
|b 9
700 1 _ |a Huber, Patrick
|0 P:(DE-H253)PIP1013897
|b 10
|e Corresponding author
773 1 8 |a 10.1021/acsnano.4c01062
|b American Chemical Society (ACS)
|d 2024-05-17
|n 22
|p 14414-14426
|3 journal-article
|2 Crossref
|t ACS Nano
|v 18
|y 2024
|x 1936-0851
773 _ _ |a 10.1021/acsnano.4c01062
|g Vol. 18, no. 22, p. 14414 - 14426
|0 PERI:(DE-600)2383064-5
|n 22
|p 14414-14426
|t ACS nano
|v 18
|y 2024
|x 1936-0851
856 4 _ |u https://bib-pubdb1.desy.de/record/611664/files/li-et-al-2024-self-assembly-of-ionic-superdiscs-in-nanopores.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/611664/files/li-et-al-2024-self-assembly-of-ionic-superdiscs-in-nanopores.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:611664
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1095928
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1095928
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1020038
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1020038
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1007852
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1013897
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1013897
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-H253)CIMMS-20211022
|k CIMMS
|l CIMMS-RA Center for integr. Multiscale M
|x 0
920 1 _ |0 I:(DE-H253)TUHH-20210331
|k TUHH
|l Technische Universität Hamburg-Harburg
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)CIMMS-20211022
980 _ _ |a I:(DE-H253)TUHH-20210331
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1021/cr400334b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.5772/65888
|9 -- missing cx lookup --
|2 Crossref
|u Devaki, S. J.; Sasi, R. Ionic Liquids/Ionic Liquid Crystals for Safe and Sustainable Energy Storage Systems. IntechOpen. 2017, 14.
999 C 5 |a 10.1002/cplu.202100397
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/ma4010206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C7CP08186C
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.120.067801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.chemrev.1c00761
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/natrevmats.2017.1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.0c01935
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C8CP03404D
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/tcr.10015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/15421400390213708
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsnano.8b01822
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.macromol.7b00224
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.chemrev.5b00190
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Cleaver D. J.
|y 1996
|2 Crossref
|t The random anisotropy nematic spin model
|o Cleaver D. J. The random anisotropy nematic spin model 1996
999 C 5 |a 10.1063/1.2142100
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3502595
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/physreve.82.011706
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsami.6b15361
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adfm.201800207
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.pmatsci.2019.03.005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C9NR07143A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C9NR07143A
|9 -- missing cx lookup --
|2 Crossref
|u Sentker, K. Liquid Crystals in Nanoporous Solids: From Nanoscale Physics to Designing Metamaterials. Ph.D. thesis, Hamburg University of Technology, 2019.
999 C 5 |a 10.1103/PhysRevB.60.12657
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/physrevb.73.125412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/18/6/R01
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.175701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/27/10/103102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.57.94
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/physreve.68.021705
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b802207k
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.227802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2982
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.88.042502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c5sm00108k
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4920979
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/02678292.2016.1205674
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c7nr07273b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/physrevx.7.041029
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.7b02254
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adfm.201806698
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/11763-vol1
|1 Gang O.
|y 2020
|2 Crossref
|v 1
|9 -- missing cx lookup --
999 C 5 |a 10.1103/PhysRevLett.127.198001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-648X/ac630b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/026782900202499
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn302937t
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp303690q
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C4SM00211C
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn406368e
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn506605p
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.89.062501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C7SM00620A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C8NA00308D
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsanm.3c02473
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cphc.201000444
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.molliq.2021.115666
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.200903264
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.86.021701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn203448c
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/23/18/184109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/physrevlett.101.187801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/physrevb.80.035421
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0909049511047236
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Li, Z.; Raab, A. R.; Kolmangadi, M. A.; Busch, M.; Grunwald, M.; Demel, F.; Bertram, F.; Kityk, A. V.; Schoenhals, A.; Laschat, S.; Huber, P. How do ionic superdiscs self-assemble in nanopores? 2024, 2401.12663, arXiv. 10.48550/arXiv.2401.12663 (Jan 23, 2024).


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21