000611664 001__ 611664
000611664 005__ 20250715170840.0
000611664 0247_ $$2doi$$a10.1021/acsnano.4c01062
000611664 0247_ $$2ISSN$$a1936-0851
000611664 0247_ $$2ISSN$$a1936-086X
000611664 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-04998
000611664 0247_ $$2altmetric$$aaltmetric:163508264
000611664 0247_ $$2pmid$$apmid:38760015
000611664 0247_ $$2WOS$$aWOS:001227280600001
000611664 0247_ $$2openalex$$aopenalex:W4396988794
000611664 037__ $$aPUBDB-2024-04998
000611664 041__ $$aEnglish
000611664 082__ $$a540
000611664 1001_ $$0P:(DE-H253)PIP1095928$$aLi, Zhuoqing$$b0$$udesy
000611664 245__ $$aSelf-Assembly of Ionic Superdiscs in Nanopores
000611664 260__ $$aWashington, DC$$bSoc.$$c2024
000611664 3367_ $$2DRIVER$$aarticle
000611664 3367_ $$2DataCite$$aOutput Types/Journal article
000611664 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738233197_3825142
000611664 3367_ $$2BibTeX$$aARTICLE
000611664 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000611664 3367_ $$00$$2EndNote$$aJournal Article
000611664 520__ $$aDiscotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperature-dependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic–hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds.
000611664 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000611664 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000611664 536__ $$0G:(GEPRIS)430146019$$aDFG project G:(GEPRIS)430146019 - Ionische Flüssigkristalle in Nanoporösen Festkörpern: Selbstorganisation, molekulare Mobilität und elektro-optische Funktionalitäten (430146019)$$c430146019$$x2
000611664 542__ $$2Crossref$$i2024-05-17$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/
000611664 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000611664 693__ $$0EXP:(DE-H253)P-P08-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P08-20150101$$aPETRA III$$fPETRA Beamline P08$$x0
000611664 7001_ $$aRaab, Aileen$$b1
000611664 7001_ $$aKolmangadi, Mohamed Aejaz$$b2
000611664 7001_ $$0P:(DE-H253)PIP1020038$$aBusch, Mark$$b3
000611664 7001_ $$aGrunwald, Marco$$b4
000611664 7001_ $$aDemel, Felix$$b5
000611664 7001_ $$0P:(DE-H253)PIP1007852$$aBertram, Florian$$b6$$udesy
000611664 7001_ $$00000-0002-4823-3220$$aKityk, Andriy V.$$b7
000611664 7001_ $$00000-0003-4330-9107$$aSchönhals, Andreas$$b8
000611664 7001_ $$aLaschat, Sabine$$b9
000611664 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b10$$eCorresponding author
000611664 77318 $$2Crossref$$3journal-article$$a10.1021/acsnano.4c01062$$bAmerican Chemical Society (ACS)$$d2024-05-17$$n22$$p14414-14426$$tACS Nano$$v18$$x1936-0851$$y2024
000611664 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.4c01062$$gVol. 18, no. 22, p. 14414 - 14426$$n22$$p14414-14426$$tACS nano$$v18$$x1936-0851$$y2024
000611664 8564_ $$uhttps://bib-pubdb1.desy.de/record/611664/files/li-et-al-2024-self-assembly-of-ionic-superdiscs-in-nanopores.pdf$$yOpenAccess
000611664 8564_ $$uhttps://bib-pubdb1.desy.de/record/611664/files/li-et-al-2024-self-assembly-of-ionic-superdiscs-in-nanopores.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000611664 909CO $$ooai:bib-pubdb1.desy.de:611664$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000611664 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095928$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000611664 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1095928$$aCentre for Free-Electron Laser Science$$b0$$kCFEL
000611664 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020038$$aExternal Institute$$b3$$kExtern
000611664 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020038$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000611664 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007852$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000611664 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY
000611664 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b10$$kExtern
000611664 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000611664 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000611664 9141_ $$y2024
000611664 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000611664 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000611664 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000611664 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000611664 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000611664 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000611664 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000611664 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000611664 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000611664 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
000611664 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
000611664 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x0
000611664 9201_ $$0I:(DE-H253)TUHH-20210331$$kTUHH$$lTechnische Universität Hamburg-Harburg$$x1
000611664 980__ $$ajournal
000611664 980__ $$aVDB
000611664 980__ $$aI:(DE-H253)CIMMS-20211022
000611664 980__ $$aI:(DE-H253)TUHH-20210331
000611664 980__ $$aUNRESTRICTED
000611664 9801_ $$aFullTexts
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cr400334b
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5772/65888$$uDevaki, S. J.; Sasi, R. Ionic Liquids/Ionic Liquid Crystals for Safe and Sustainable Energy Storage Systems. IntechOpen. 2017, 14.
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cplu.202100397
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/ma4010206
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7CP08186C
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.067801
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.1c00761
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/natrevmats.2017.1
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.0c01935
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C8CP03404D
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/tcr.10015
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/15421400390213708
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsnano.8b01822
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.macromol.7b00224
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.5b00190
000611664 999C5 $$1Cleaver D. J.$$2Crossref$$oCleaver D. J. The random anisotropy nematic spin model 1996$$tThe random anisotropy nematic spin model$$y1996
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2142100
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3502595
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physreve.82.011706
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.6b15361
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201800207
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pmatsci.2019.03.005
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C9NR07143A
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C9NR07143A$$uSentker, K. Liquid Crystals in Nanoporous Solids: From Nanoscale Physics to Designing Metamaterials. Ph.D. thesis, Hamburg University of Technology, 2019.
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.12657
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.73.125412
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/18/6/R01
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.175701
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/27/10/103102
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.57.94
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physreve.68.021705
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b802207k
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.227802
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2982
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.88.042502
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c5sm00108k
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4920979
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/02678292.2016.1205674
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c7nr07273b
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevx.7.041029
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.7b02254
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201806698
000611664 999C5 $$1Gang O.$$2Crossref$$9-- missing cx lookup --$$a10.1142/11763-vol1$$v1$$y2020
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.127.198001
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/ac630b
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/026782900202499
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nn302937t
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp303690q
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C4SM00211C
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nn406368e
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nn506605p
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.89.062501
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7SM00620A
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C8NA00308D
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsanm.3c02473
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cphc.201000444
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.molliq.2021.115666
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200903264
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.86.021701
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nn203448c
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/23/18/184109
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.101.187801
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.80.035421
000611664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0909049511047236
000611664 999C5 $$2Crossref$$uLi, Z.; Raab, A. R.; Kolmangadi, M. A.; Busch, M.; Grunwald, M.; Demel, F.; Bertram, F.; Kityk, A. V.; Schoenhals, A.; Laschat, S.; Huber, P. How do ionic superdiscs self-assemble in nanopores? 2024, 2401.12663, arXiv. 10.48550/arXiv.2401.12663 (Jan 23, 2024).