001     611662
005     20250715171126.0
024 7 _ |a 10.1016/j.micromeso.2024.113181
|2 doi
024 7 _ |a 1387-1811
|2 ISSN
024 7 _ |a 1873-3093
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-04996
|2 datacite_doi
024 7 _ |a WOS:001249097600001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4397031369
037 _ _ |a PUBDB-2024-04996
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a May, Manfred
|0 P:(DE-H253)PIP1089651
|b 0
245 _ _ |a Wafer-scale fabrication of mesoporous silicon functionalized with electrically conductive polymers
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1720520762_3910021
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The fabrication of hybrid materials consisting of nanoporous hosts with conductive polymers is a challenging task, since the extreme spatial confinement often conflicts with the stringent physico-chemical requirements for polymerization of organic constituents. Here, several low-threshold and scalable synthesis routes for such hybrids are presented. First, the electrochemical synthesis of composites based on mesoporous silicon (pSi) and the polymers PANI, PPy and PEDOT is discussed and validated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Polymer filling degrees of ≥74 % are achieved. Second, the production of PEDOT/pSi hybrids, based on the solid-state polymerization (SSP) of DBEDOT to PEDOT is shown. The resulting amorphous structure of the nanopore-embedded PEDOT is investigated via in-situ synchrotron-based X-ray scattering. In addition, a twofold increase in the electrical conductivity of the hybrid compared to the porous silicon host is shown, making this system particularly promising for thermoelectric applications.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a DFG project 402553194 - Thermoelektrische Hybridmaterialien basierend auf porösem Silizium: der Zusammenhang zwischen makroskopischen Transportphänomenen und mikroskopischer Struktur und elementaren Anregungen (402553194)
|0 G:(GEPRIS)402553194
|c 402553194
|x 1
536 _ _ |a SFB 986 B06 - Multiphysikalische Modellierung und Simulation von Kompositwerkstoffen aus Metall und Polymer auf der Nanoskala (B06) (239714528)
|0 G:(GEPRIS)239714528
|c 239714528
|x 2
536 _ _ |a FS-Proposal: I-20210755 (I-20210755)
|0 G:(DE-H253)I-20210755
|c I-20210755
|x 3
542 _ _ |i 2024-08-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-08-01
|2 Crossref
|u https://www.elsevier.com/legal/tdmrep-license
542 _ _ |i 2024-05-17
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Boderius, Mathis
|0 P:(DE-H253)PIP1100328
|b 1
700 1 _ |a Gostkowska-Lekner, Natalia
|b 2
700 1 _ |a Busch, Mark
|0 P:(DE-H253)PIP1020038
|b 3
700 1 _ |a Habicht, Klaus
|b 4
700 1 _ |a Hofmann, Tommy
|b 5
700 1 _ |a Huber, Patrick
|0 P:(DE-H253)PIP1013897
|b 6
|e Corresponding author
773 1 8 |a 10.1016/j.micromeso.2024.113181
|b Elsevier BV
|d 2024-08-01
|p 113181
|3 journal-article
|2 Crossref
|t Microporous and Mesoporous Materials
|v 376
|y 2024
|x 1387-1811
773 _ _ |a 10.1016/j.micromeso.2024.113181
|g Vol. 376, p. 113181 -
|0 PERI:(DE-600)2012505-7
|p 113181
|t Microporous and mesoporous materials
|v 376
|y 2024
|x 1387-1811
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/611662/files/1-s2.0-S1387181124002038-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/611662/files/1-s2.0-S1387181124002038-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:611662
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1089651
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1089651
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1100328
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1100328
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1020038
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1020038
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1013897
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1013897
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROPOR MESOPOR MAT : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MICROPOR MESOPOR MAT : 2022
|d 2024-12-13
920 1 _ |0 I:(DE-H253)CIMMS-20211022
|k CIMMS
|l CIMMS-RA Center for integr. Multiscale M
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CIMMS-20211022
980 1 _ |a FullTexts
999 C 5 |a 10.1063/1.103561
|9 -- missing cx lookup --
|1 Canham
|p 1046 -
|2 Crossref
|t Appl. Phys. Lett.
|v 57
|y 1990
999 C 5 |a 10.1063/1.104512
|9 -- missing cx lookup --
|1 Lehmann
|p 856 -
|2 Crossref
|t Appl. Phys. Lett.
|v 58
|y 1991
999 C 5 |a 10.1038/s41598-019-43440-y
|9 -- missing cx lookup --
|1 Ahmed
|p 6973 -
|2 Crossref
|t Sci. Rep.
|v 9
|y 2019
999 C 5 |a 10.3389/fbioe.2015.00060
|9 -- missing cx lookup --
|1 Hernández-Montelongo
|p may -
|2 Crossref
|t Front. Bioeng. Biotechnol.
|v 3
|y 2015
999 C 5 |1 Huber
|y 2020
|2 Crossref
|o Huber 2020
999 C 5 |a 10.1103/PhysRevLett.125.234502
|1 Cencha
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1063/5.0189633
|1 Dittrich
|9 -- missing cx lookup --
|2 Crossref
|t J. Chem. Phys.
|v 160
|y 2024
999 C 5 |a 10.1109/JSEN.2009.2035770
|9 -- missing cx lookup --
|1 Hutter
|p 97 -
|2 Crossref
|t IEEE Sens. J.
|v 10
|y 2010
999 C 5 |a 10.1002/adma.201703740
|1 Li
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Mater.
|v 30
|y 2018
999 C 5 |a 10.1007/s12633-023-02305-w
|9 -- missing cx lookup --
|1 Lingaraja
|p 3855 -
|2 Crossref
|t Silicon
|y 2023
999 C 5 |a 10.1126/sciadv.aba1483
|1 Brinker
|9 -- missing cx lookup --
|2 Crossref
|t Sci. Adv.
|v 6
|y 2020
999 C 5 |1 Brinker
|y 2022
|2 Crossref
|o Brinker 2022
999 C 5 |1 Brinker
|y 2022
|2 Crossref
|o Brinker 2022
999 C 5 |a 10.1038/s41467-020-15217-9
|9 -- missing cx lookup --
|1 Jia
|p 1474 -
|2 Crossref
|t Nature Commun.
|v 11
|y 2020
999 C 5 |1 Alba-Simionesco
|y 2006
|2 Crossref
|o Alba-Simionesco 2006
999 C 5 |a 10.1103/PhysRevE.75.021607
|9 -- missing cx lookup --
|1 Henschel
|p 21607 -
|2 Crossref
|t Phys. Rev. E
|v 75
|y 2007
999 C 5 |a 10.1103/PhysRevE.77.042602
|9 -- missing cx lookup --
|1 Henschel
|p 42602 -
|2 Crossref
|t Phys. Rev. E
|v 77
|y 2008
999 C 5 |a 10.1063/1.3696684
|1 Hofmann
|9 -- missing cx lookup --
|2 Crossref
|t J. Chem. Phys.
|v 136
|y 2012
999 C 5 |a 10.1021/jz1012406
|9 -- missing cx lookup --
|1 Kusmin
|p 3116 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 1
|y 2010
999 C 5 |a 10.1021/ma1004925
|9 -- missing cx lookup --
|1 Kusmin
|p 8162 -
|2 Crossref
|t Macromolecules
|v 43
|y 2010
999 C 5 |a 10.1103/PhysRevE.86.021701
|9 -- missing cx lookup --
|1 Calus
|p 21701 -
|2 Crossref
|t Phys. Rev. E
|v 86
|y 2012
999 C 5 |a 10.1021/acs.langmuir.6b04534
|9 -- missing cx lookup --
|1 Vincent
|p 1655 -
|2 Crossref
|t Langmuir
|v 33
|y 2017
999 C 5 |a 10.1016/j.micromeso.2017.02.023
|9 -- missing cx lookup --
|1 Hofmann
|p 263 -
|2 Crossref
|t Microporous Mesoporous Mater.
|v 243
|y 2017
999 C 5 |a 10.1016/j.micromeso.2020.110814
|1 Hofmann
|9 -- missing cx lookup --
|2 Crossref
|t Microporous Mesoporous Mater.
|v 312
|y 2021
999 C 5 |a 10.3389/fchem.2021.732132
|1 Lu
|9 -- missing cx lookup --
|2 Crossref
|t Front. Chem.
|v 9
|y 2021
999 C 5 |1 Prunet
|y 2021
|2 Crossref
|o Prunet 2021
999 C 5 |a 10.1063/5.0056484
|1 Hornberger
|9 -- missing cx lookup --
|2 Crossref
|t Appl. Phys. Lett.
|v 119
|y 2021
999 C 5 |a 10.1149/2.0191808jes
|9 -- missing cx lookup --
|1 Mir
|p B3137 -
|2 Crossref
|t J. Electrochem. Soc.
|v 165
|y 2018
999 C 5 |a 10.1021/acs.jpclett.0c02831
|9 -- missing cx lookup --
|1 Backes
|p 10538 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 11
|y 2020
999 C 5 |a 10.1016/j.solmat.2012.07.006
|9 -- missing cx lookup --
|1 Wright
|p 87 -
|2 Crossref
|t Sol. Energy Mater. Sol. Cells
|v 107
|y 2012
999 C 5 |a 10.1039/C6RA08599G
|9 -- missing cx lookup --
|1 Lee
|p 53339 -
|2 Crossref
|t RSC Adv.
|v 6
|y 2016
999 C 5 |a 10.1016/j.coco.2021.100877
|1 Zhou
|9 -- missing cx lookup --
|2 Crossref
|t Compos. Commun.
|v 27
|y 2021
999 C 5 |a 10.1039/C5NR08421K
|9 -- missing cx lookup --
|1 Zhang
|p 8033 -
|2 Crossref
|t Nanoscale
|v 8
|y 2016
999 C 5 |a 10.1002/adfm.201600938
|9 -- missing cx lookup --
|1 Stenner
|p 5174 -
|2 Crossref
|t Adv. Funct. Mater.
|v 26
|y 2016
999 C 5 |a 10.1038/nmat4461
|9 -- missing cx lookup --
|1 Beekman
|p 1182 -
|2 Crossref
|t Nature Mater.
|v 14
|y 2015
999 C 5 |a 10.1007/s00339-012-6879-5
|9 -- missing cx lookup --
|1 Boor
|p 789 -
|2 Crossref
|t Appl. Phys. A
|v 107
|y 2012
999 C 5 |a 10.1038/nature06458
|9 -- missing cx lookup --
|1 Boukai
|p 168 -
|2 Crossref
|t Nature
|v 451
|y 2008
999 C 5 |a 10.1016/j.micromeso.2022.112155
|1 Gostkowska-Lekner
|9 -- missing cx lookup --
|2 Crossref
|t Microporous Mesoporous Mater.
|v 343
|y 2022
999 C 5 |a 10.1039/c3ee23729j
|9 -- missing cx lookup --
|1 Park
|p 788 -
|2 Crossref
|t Energy Environ. Sci.
|v 6
|y 2013
999 C 5 |1 Das
|y 2022
|2 Crossref
|o Das 2022
999 C 5 |a 10.1149/1.2185286
|9 -- missing cx lookup --
|1 Harraz
|p C349 -
|2 Crossref
|t J. Electrochem. Soc.
|v 153
|y 2006
999 C 5 |a 10.1016/0013-4686(95)00073-N
|9 -- missing cx lookup --
|1 Schultze
|p 1369 -
|2 Crossref
|t Electrochim. Acta
|v 40
|y 1995
999 C 5 |a 10.3762/bjnano.6.65
|9 -- missing cx lookup --
|1 Zhu
|p 640 -
|2 Crossref
|t Beilstein J. Nanotechnol.
|v 6
|y 2015
999 C 5 |1 Sailor
|y 2011
|2 Crossref
|o Sailor 2011
999 C 5 |a 10.1016/0379-6779(91)91243-4
|9 -- missing cx lookup --
|1 Miras
|p 3081 -
|2 Crossref
|t Synth. Met.
|v 43
|y 1991
999 C 5 |a 10.1149/1.1455649
|9 -- missing cx lookup --
|1 Pandey
|p D51 -
|2 Crossref
|t J. Electrochem. Soc.
|v 149
|y 2002
999 C 5 |a 10.2298/HEMIND131122008G
|9 -- missing cx lookup --
|1 Gvozdenovic
|p 673 -
|2 Crossref
|t Hem. Ind.
|v 68
|y 2014
999 C 5 |a 10.1038/s41467-021-23398-0
|9 -- missing cx lookup --
|1 Thelen
|p 3597 -
|2 Crossref
|t Nature Commun.
|v 12
|y 2021
999 C 5 |a 10.1155/2007/89718
|9 -- missing cx lookup --
|1 Kumar
|p 1 -
|2 Crossref
|t J. Nanomater.
|v 2007
|y 2007
999 C 5 |a 10.1016/j.apsusc.2004.05.001
|9 -- missing cx lookup --
|1 Tüken
|p 292 -
|2 Crossref
|t Appl. Surf. Sci.
|v 236
|y 2004
999 C 5 |a 10.1021/jp066413p
|9 -- missing cx lookup --
|1 Heinze
|p 989 -
|2 Crossref
|t J. Phys. Chem. B
|v 111
|y 2007
999 C 5 |a 10.1088/1742-6596/127/1/012016
|1 Otero
|9 -- missing cx lookup --
|2 Crossref
|t J. Phys. Conf. Ser.
|v 127
|y 2008
999 C 5 |a 10.1021/la051403l
|9 -- missing cx lookup --
|1 DeLongchamp
|p 11480 -
|2 Crossref
|t Langmuir
|v 21
|y 2005
999 C 5 |1 Sapurina
|y 2012
|2 Crossref
|o Sapurina 2012
999 C 5 |1 Yazdanpanah
|y 2019
|2 Crossref
|o Yazdanpanah 2019
999 C 5 |a 10.1016/j.electacta.2003.12.033
|9 -- missing cx lookup --
|1 Chen-Yang
|p 2031 -
|2 Crossref
|t Electrochim. Acta
|v 49
|y 2004
999 C 5 |1 Elschner
|y 2010
|2 Crossref
|o Elschner 2010
999 C 5 |a 10.1002/adv.21261
|9 -- missing cx lookup --
|1 Ruiz
|p E180 -
|2 Crossref
|t Adv. Polym. Technol.
|v 32
|y 2013
999 C 5 |a 10.1021/ja037115y
|9 -- missing cx lookup --
|1 Meng
|p 15151 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 125
|y 2003
999 C 5 |a 10.1038/s41467-020-17708-1
|9 -- missing cx lookup --
|1 Wang
|p 3882 -
|2 Crossref
|t Nature Commun.
|v 11
|y 2020
999 C 5 |a 10.1002/cssc.201200349
|9 -- missing cx lookup --
|1 Kim
|p 2173 -
|2 Crossref
|t ChemSusChem
|v 5
|y 2012
999 C 5 |a 10.1016/0022-0728(95)04424-8
|9 -- missing cx lookup --
|1 Bressers
|p 131 -
|2 Crossref
|t J. Electroanal. Chem.
|v 406
|y 1996
999 C 5 |a 10.1002/smll.200600135
|9 -- missing cx lookup --
|1 Han
|p 1164 -
|2 Crossref
|t Small
|v 2
|y 2006
999 C 5 |a 10.1016/S0379-6779(98)00315-4
|9 -- missing cx lookup --
|1 Aasmundtveit
|p 561 -
|2 Crossref
|t Synth. Met.
|v 101
|y 1999
999 C 5 |a 10.1103/PhysRevLett.100.175701
|1 Schaefer
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Rev. Lett.
|v 100
|y 2008
999 C 5 |1 Huber
|y 2015
|2 Crossref
|o Huber 2015
999 C 5 |a 10.1002/adma.202001068
|1 Meldrum
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Mater.
|v 32
|y 2020
999 C 5 |a 10.1080/09500831003766999
|9 -- missing cx lookup --
|1 Henschel
|p 481 -
|2 Crossref
|t Philos. Mag. Lett.
|v 90
|y 2010
999 C 5 |a 10.1109/T-ED.1982.20698
|9 -- missing cx lookup --
|1 Arora
|p 292 -
|2 Crossref
|t IEEE Trans. Electron Devices
|v 29
|y 1982


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21