| Home > Publications database > Bouncing dark matter > print |
| 001 | 611514 | ||
| 005 | 20250715170918.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevD.109.023032 |2 doi |
| 024 | 7 | _ | |a Puetter:2022ucx |2 INSPIRETeX |
| 024 | 7 | _ | |a inspire:2138855 |2 inspire |
| 024 | 7 | _ | |a 2470-0010 |2 ISSN |
| 024 | 7 | _ | |a 2470-0037 |2 ISSN |
| 024 | 7 | _ | |a 2470-0029 |2 ISSN |
| 024 | 7 | _ | |a arXiv:2208.08453 |2 arXiv |
| 024 | 7 | _ | |a 10.3204/PUBDB-2024-04951 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:134718625 |2 altmetric |
| 024 | 7 | _ | |a WOS:001173206500001 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W4391385487 |
| 037 | _ | _ | |a PUBDB-2024-04951 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 088 | _ | _ | |a arXiv:2208.08453 |2 arXiv |
| 088 | _ | _ | |a DESY-22-125 |2 DESY |
| 100 | 1 | _ | |a Puetter, Lucas |0 0009-0003-7031-3897 |b 0 |
| 245 | _ | _ | |a Bouncing dark matter |
| 260 | _ | _ | |a Ridge, NY |c 2024 |b American Physical Society |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1722342774_984945 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Phys. Rev. D 109, 023032 (2024). 9 pages, 7 figures; v2: minor changes and references added, matches published version |
| 520 | _ | _ | |a We present a novel mechanism for thermal dark matter production, characterized by a “bounce”: the dark matter equilibrium distribution transitions from the canonical exponentially falling abundance to an exponentially rising one, resulting in an enhancement of the freeze-out abundance by many orders of magnitude. We discuss several realizations of bouncing dark matter. The bounce allows the present-day dark matter annihilation cross section to be significantly larger than the canonical thermal target, improving the prospects for indirect detection signals. |
| 536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 390833306 - EXC 2121: Quantum Universe (390833306) |0 G:(GEPRIS)390833306 |c 390833306 |x 1 |
| 542 | _ | _ | |i 2024-01-31 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
| 588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
| 650 | _ | 7 | |a dark matter: production |2 INSPIRE |
| 650 | _ | 7 | |a dark matter: annihilation |2 INSPIRE |
| 650 | _ | 7 | |a cross section: annihilation |2 INSPIRE |
| 650 | _ | 7 | |a thermal |2 INSPIRE |
| 650 | _ | 7 | |a bounce |2 INSPIRE |
| 650 | _ | 7 | |a freeze-out |2 INSPIRE |
| 650 | _ | 7 | |a enhancement |2 INSPIRE |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Ruderman, Joshua T. |0 P:(DE-H253)PIP1094317 |b 1 |
| 700 | 1 | _ | |a Salvioni, Ennio |0 0000-0002-2173-5116 |b 2 |
| 700 | 1 | _ | |a Shakya, Bibhushan |0 P:(DE-H253)PIP1095061 |b 3 |
| 773 | 1 | 8 | |a 10.1103/physrevd.109.023032 |b American Physical Society (APS) |d 2024-01-31 |n 2 |p 023032 |3 journal-article |2 Crossref |t Physical Review D |v 109 |y 2024 |x 2470-0010 |
| 773 | _ | _ | |a 10.1103/PhysRevD.109.023032 |g Vol. 109, no. 2, p. 023032 |0 PERI:(DE-600)2844732-3 |n 2 |p 023032 |t Physical review / D |v 109 |y 2024 |x 2470-0010 |
| 787 | 0 | _ | |a Puetter, Lucas et.al. |d 2022 |i IsParent |0 PUBDB-2022-03926 |r DESY-22-125 ; arXiv:2208.08453 |t Bouncing Dark Matter |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/611514/files/PhysRevD.109.023032.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/611514/files/PhysRevD.109.023032.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:611514 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1094317 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1095061 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-02-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2024-02-05 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-02-05 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2024-02-05 |
| 915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2022 |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
| 915 | _ | _ | |a No Peer Review |0 StatID:(DE-HGF)0020 |2 StatID |b ASC |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV D : 2022 |d 2024-12-10 |
| 920 | 1 | _ | |0 I:(DE-H253)T-20120731 |k T |l Theorie-Gruppe |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)T-20120731 |
| 980 | 1 | _ | |a FullTexts |
| 999 | C | 5 | |a 10.1201/9780429492860 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.43.3191 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1086/171833 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.113.171301 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.115.061301 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.116.221302 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP12(2016)033 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1475-7516/2017/03/045 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.119.061102 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.119.121801 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP08(2018)079 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.123.191801 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.101.103013 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP06(2020)103 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.126.081802 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.130.121001 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.130.171001 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP06(2011)129 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP12(2016)039 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.117.211801 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.96.083521 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1475-7516/2008/10/043 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.106.083517 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.79.015014 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.94.035005 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP10(2020)049 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.40.3231 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP03(2022)005 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/JHEP10(2022)182 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.91.011302 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.96.103521 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.91.103531 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1475-7516/2016/06/024 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1475-7516/2016/08/001 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.102.075019 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevD.105.035005 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.122.191103 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.115.231301 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1475-7516/2021/01/057 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/RevModPhys.93.035007 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1016/j.dark.2022.101061 |9 -- missing cx lookup -- |2 Crossref |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|